Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(22): e202404474, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38453652

ABSTRACT

Herein we introduce chalcogen squares via selenadiazole motifs as a new class of dynamic supramolecular bonding interactions for the modification and control of soft matter materials. We showcase selenadiazole motifs in supramolecular networks of varying primary chain length prepared through polymerization using tandem step-growth/Passerini multicomponent reactions (MCRs). Compared to controls lacking the selenadiazole motif, these networks display increased glass transition temperatures and moduli due to the chalcogen bonding linkages formed between chains. These elastomeric networks were shown to autonomously heal at room temperature, retaining up to 83 % of the ultimate tensile strength. Lastly, we use post-polymerization modification via the Biginelli MCR to add selenadiazole motifs to narrowly dispersed polymers for controlled topology in solution. Chalcogen squares via selenadiazoles introduce an exciting exchange mechanism to the realm of dynamic materials.

2.
J Am Chem Soc ; 146(15): 10812-10821, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38466658

ABSTRACT

Aqueous electrolytes with a low voltage window (1.23 V) and prone side reactions, such as hydrogen evolution reaction and cathode dissolution, compromise the advantages of high safety and low cost of aqueous metal-ion batteries. Herein, introducing catechol (CAT) into the aqueous electrolyte, an outer sphere electron transfer mechanism is initiated to inhibit the water reactivity, achieving an electrochemical window of 3.24 V. In a typical Zn-ion battery, the outer sphere electrons jump from CAT to Zn2+-H2O at a geometrically favorable situation and between the solvation molecules without breaking or forming chemical bonds as that of the inner sphere electron transfers. The excited state π-π stacking further leads to the outer sphere electron transfer occurring at the electrolyte/electrode interface. This high-voltage electrolyte allows achieving an operating voltage two times higher than that of the usual aqueous electrolytes and provides almost the highest energy density and power density for the V2O5-based aqueous Zn-ion full batteries. The Zn//Zn symmetric battery delivers a 4000 h lifespan, and the Zn//V2O5 full battery achieves a ∼380 W h kg-1 energy density and a 92% capacity retention after 3000 cycles at 1 A g-1 and a 2.4 V output voltage. This outer sphere electron transfer strategy paves the way for designing high-voltage aqueous electrolytes.

3.
Angew Chem Int Ed Engl ; 63(10): e202319839, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38205669

ABSTRACT

Protein functions are enabled by their perfectly arranged 3D structure, which is the result of a hierarchical intramolecular folding process. Sequence-defined polypeptide chains form locally ordered secondary structures (i.e., α-helix and ß-sheet) through hydrogen bonding between the backbone amides, shaping the overall tertiary structure. To generate similarly complex macromolecular architectures based on synthetic materials, a plethora of strategies have been developed to induce and control the folding of synthetic polymers. However, the degree of complexity of the structure-driving ensemble of interactions demonstrated by natural polymers is unreached, as synthesizing long sequence-defined polymers with functional backbones remains a challenge. Herein, we report the synthesis of hybrid peptide-N,N-Dimethylacrylamide copolymers via radical Ring-Opening Polymerization (rROP) of peptide containing macrocycles. The resulting synthetic polymers contain sequence-defined regions of ß-sheet encoding amino acid sequences. Exploiting the pH responsiveness of the embedded sequences, protonation or deprotonation in water induces self-assembly of the peptide strands at an intramacromolecular level, driving polymer chain folding via formation of ß-sheet secondary structures. We demonstrate that the folding behavior is sequence dependent and reversible.


Subject(s)
Peptides , Proteins , Protein Conformation, beta-Strand , Peptides/chemistry , Proteins/chemistry , Polymers/chemistry , Hydrogen-Ion Concentration , Protein Folding
4.
Nat Commun ; 14(1): 5427, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37696798

ABSTRACT

Hadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386. We find accumulation and aging of DOC and DIC in the subsurface sediments, which we interpret as enhanced production of labile dissolved carbon owing to earthquake-triggered turbidites, which supports intensive microbial methanogenesis in the trench sediments. The residual dissolved carbon accumulates in deep subsurface sediments and may continue to fuel the deep biosphere. Tectonic events can therefore enhance carbon accumulation and stimulate carbon transformation in plate convergent trench systems, which may accelerate carbon export into the subduction zones.

5.
J Am Chem Soc ; 145(11): 6221-6229, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36898136

ABSTRACT

Biopolymers such as proteins and nucleic acids are the key building blocks of life. Synthetic polymers have nevertheless revolutionized our everyday life through their robust synthetic accessibility. Combining the unmatched functionality of biopolymers with the robustness of tailorable synthetic polymers holds the promise to create materials that can be designed ad hoc for a wide array of applications. Radical polymerization is the most widely applied polymerization technique in both fundamental science and industrial polymer production. While this polymerization technique is robust and well controlled, it generally yields unfunctional all-carbon backbones. Combinations of natural polymers such as peptides, with synthetic polymers, are thus limited to tethering peptides onto the side chains or chain ends of the latter. This synthetic limitation is a critical restraint, considering that the function of biopolymers is programmed into the sequence of their main chain (i.e., primary structure). Here, we report the radical copolymerization of peptides and synthetic comonomers yielding synthetic polymers with defined peptide sequences embedded into their main chain. Key was the development of a solid-phase peptide synthesis (SPPS) approach to generate synthetic access to peptide conjugates containing allylic sulfides. Following cyclization, the obtained peptide monomers can be readily copolymerized with N,N-dimethylacrylamide (DMA)─controlled by reversible addition-fragmentation chain transfer (RAFT). Importantly, the developed synthetic strategy is compatible with all 20 standard amino acids and uses exclusively standard SPPS chemicals or chemicals accessible in one-step synthesis─prerequisite for widespread and universal application.


Subject(s)
Peptides, Cyclic , Peptides , Polymerization , Polymers/chemistry , Biopolymers
6.
Nanomicro Lett ; 14(1): 90, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35362783

ABSTRACT

Oxygen vacancies (Vo) in electrocatalysts are closely correlated with the hydrogen evolution reaction (HER) activity. The role of vacancy defects and the effect of their concentration, however, yet remains unclear. Herein, Bi2O3, an unfavorable electrocatalyst for the HER due to a less than ideal hydrogen adsorption Gibbs free energy (ΔGH*), is utilized as a perfect model to explore the function of Vo on HER performance. Through a facile plasma irradiation strategy, Bi2O3 nanosheets with different Vo concentrations are fabricated to evaluate the influence of defects on the HER process. Unexpectedly, while the generated oxygen vacancies contribute to the enhanced HER performance, higher Vo concentrations beyond a saturation value result in a significant drop in HER activity. By tunning the Vo concentration in the Bi2O3 nanosheets via adjusting the treatment time, the Bi2O3 catalyst with an optimized oxygen vacancy concentration and detectable charge carrier concentration of 1.52 × 1024 cm-3 demonstrates enhanced HER performance with an overpotential of 174.2 mV to reach 10 mA cm-2, a Tafel slope of 80 mV dec-1, and an exchange current density of 316 mA cm-2 in an alkaline solution, which approaches the top-tier activity among Bi-based HER electrocatalysts. Density-functional theory calculations confirm the preferred adsorption of H* onto Bi2O3 as a function of oxygen chemical potential (∆µO) and oxygen partial potential (PO2) and reveal that high Vo concentrations result in excessive stability of adsorbed hydrogen and hence the inferior HER activity. This study reveals the oxygen vacancy concentration-HER catalytic activity relationship and provides insights into activating catalytically inert materials into highly efficient electrocatalysts.

7.
Depos Rec ; 7(2): 256-270, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34413980

ABSTRACT

The Eastern and Western Mediterranean are separated by an elevated plateau that regulates water exchange between these two basins. The Maltese archipelago, situated atop this topographic high, offers a unique window into the evolution of this plateau in the lead up to the Messinian Salinity Crisis. The Upper Coralline Limestone Formation was deposited between the late Tortonian and the early Messinian and was probably terminated by palaeoceanographic events related to the Messinian Salinity Crisis. It represents the youngest Miocene sedimentary deposits outcropping in the Maltese archipelago. This shallow-water carbonate unit can be used to trace palaeoenvironmental changes atop the sill between the Eastern and Western Mediterranean and to explain the possible water flow restrictions to the Eastern Mediterranean that could have preceded the Messinian Salinity Crisis. Here field surveys, and analysis of the depositional environment within the Upper Coralline Limestone in Malta, are combined with recently acquired multichannel seismic reflection profiles between Malta and Gozo, to reconstruct the depositional sequence in the Malta Plateau during the late Miocene. The Upper Coralline Limestone consists of multiple coralline and larger benthic foraminifera dominated facies, extending from subtidal to intertidal environments. These accumulated in two depositional cycles observed in both outcrop and seismic reflection data. Each cycle exhibits an early aggradation-progradation phase followed by a progradation phase and a final aggradation phase. These manifest themselves in the outcrops as shallowing and deepening upwards phases. These were deposited above a deep water unit and are indicative of a preceding uplift phase followed by filling of the accommodation space through the deposition of the Upper Coralline Limestone Formation in shallow marine depths. The presence of this highly elevated sill during the late Miocene could have restricted circulation to the eastern basin.

8.
J Am Chem Soc ; 143(19): 7292-7297, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33955743

ABSTRACT

We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed via the pyridine mediated deprotonation of the photochemically generated thiophenol. Subsequently, the thiol-Michael reaction between the thiophenol anion and electron deficient alkynes/alkenes proceeds additive-free. Hereby, the underlying photoinduced rearrangement of o-thiopyrinidylbenzaldehyde (oTPyB) generating the free thiol is described for the first time. We studied the influence of various reactions conditions as well as solvents and substrates. We exemplify our findings in a polymer end group modification and obtained macromolecules with excellent end group fidelity.

9.
Chem Commun (Camb) ; 57(40): 4918-4921, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33870998

ABSTRACT

Nature builds simple molecules into highly complex assemblies, which are involved in all fundamental processes of life. Some of the most intriguing biological assemblies are those that can be precisely reconfigured to achieve different functions using the same building blocks. Understanding the reconfiguration of synthetic self-assembled systems will allow us to better understand the complexity of proteins and design useful artificial chemical systems. Here we have prepared a relatively simple system in which two distinct self-assembled structures, a [Fe2L3]4+ helicate and a [Fe4L6]8+ cage that are formed from the same precursors, coexist at equilibrium. We have measured the rates of interconversion of these two species and propose a mechanism for the transformation.

10.
Angew Chem Int Ed Engl ; 60(18): 10402-10408, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33571392

ABSTRACT

Herein, we pioneer a wavelength-gated synthesis route to phenalene diimides. Consecutive Diels-Alder reactions of methylisophthalaldehydes and maleimides afford hexahydro-phenalene-1,6-diol diimides via 5-formyl-hexahydro-benzo[f]isoindoles as the intermediate. Both photoreactions are efficient (82-99 % yield) and exhibit excellent diastereoselectivity (62-98 % d.r.). The wavelength-gated nature of the stepwise reaction enables the modular construction of phenalene diimide scaffolds by choice of substrate and wavelength. Importantly, this synthetic methodology opens a facile avenue to a new class of persistent phenalenyl diimide neutral radicals, constituting a versatile route to spin-active molecules.

11.
Nat Commun ; 11(1): 1372, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170097

ABSTRACT

Although offshore freshened groundwater (OFG) systems have been documented in numerous continental margins worldwide, their geometry, controls and emplacement dynamics remain poorly constrained. Here we integrate controlled-source electromagnetic, seismic reflection and borehole data with hydrological modelling to quantitatively characterise a previously unknown OFG system near Canterbury, New Zealand. The OFG system consists of one main, and two smaller, low salinity groundwater bodies. The main body extends up to 60 km from the coast and a seawater depth of 110 m. We attribute along-shelf variability in salinity to permeability heterogeneity due to permeable conduits and normal faults, and to recharge from rivers during sea level lowstands. A meteoric origin of the OFG and active groundwater migration from onshore are inferred. However, modelling results suggest that the majority of the OFG was emplaced via topographically-driven flow during sea level lowstands in the last 300 ka. Global volumetric estimates of OFG will be significantly revised if active margins, with steep coastal topographies like the Canterbury margin, are considered.

13.
Sci Adv ; 4(3): eaar3748, 2018 03.
Article in English | MEDLINE | ID: mdl-29546245

ABSTRACT

Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikoura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year-1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

14.
Sci Rep ; 8(1): 1078, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348516

ABSTRACT

The Messinian salinity crisis (MSC) - the most abrupt, global-scale environmental change since the end of the Cretaceous - is widely associated with partial desiccation of the Mediterranean Sea. A major open question is the way normal marine conditions were abruptly restored at the end of the MSC. Here we use geological and geophysical data to identify an extensive, buried and chaotic sedimentary body deposited in the western Ionian Basin after the massive Messinian salts and before the Plio-Quaternary open-marine sedimentary sequence. We show that this body is consistent with the passage of a megaflood from the western to the eastern Mediterranean Sea via a south-eastern Sicilian gateway. Our findings provide evidence for a large amplitude drawdown in the Ionian Basin during the MSC, support the scenario of a Mediterranean-wide catastrophic flood at the end of the MSC, and suggest that the identified sedimentary body is the largest known megaflood deposit on Earth.

15.
Phys Chem Chem Phys ; 14(10): 3604-11, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22314792

ABSTRACT

Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule-gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.


Subject(s)
Fluorobenzenes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry
16.
J Magn Reson ; 211(2): 170-7, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21665499

ABSTRACT

Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogs ((2)H(12)- and/or (2)H(12)-(15)N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O(2) concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O(2) sensitivity. Labeling the nitroxides with (15)N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation.


Subject(s)
Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy/methods , Isoindoles/chemistry , Oximetry/methods , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , CHO Cells , Chromatography, Thin Layer , Clone Cells , Cricetinae , Cricetulus , Deuterium , Indicators and Reagents , Indoles , Isotope Labeling , Methylamines , Nitrogen Oxides/chemistry , Nitrogen Radioisotopes , Oxygen/chemistry , Oxygen Consumption/drug effects , Trypan Blue
17.
Chemistry ; 15(16): 4156-64, 2009.
Article in English | MEDLINE | ID: mdl-19283822

ABSTRACT

Radical assembly: Halogen bonding has been observed for the first time between an isoindoline nitroxide and an iodoperfluorocarbon (see figure), which cocrystallize to form a discrete 2:1 supramolecular compound in which N--O(.)I halogen bonding is the dominant intermolecular interaction. This illustrates the potential use of halogen bonding and isoindoline nitroxide tectons for the assembly of organic spin systems.The isoindoline nitroxide 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) and 1,4-diiodotetrafluorobenzene readily form a discrete 2:1 complex that shows evidence of relatively strong N--O(.)I halogen bonding. This interaction was characterized in the solid state by single-crystal X-ray analysis, thermal analysis, and vibrational spectroscopy (IR and Raman), backed by density functional theory calculations. EPR spectroscopy performed on a solution of TMIO in pentafluoroiodobenzene, a halogen-bonding donor, indicates that halogen bonding induces an increase in electron density at the nitroxide nitrogen nucleus and an increase in the nitroxide rotational correlation time. Our findings demonstrate the potential of utilizing halogen-bonding interactions to promote the self-assembly of new isoindoline nitroxide tectons for the preparation of organic spin systems.


Subject(s)
Benzene Derivatives/chemistry , Cyclic N-Oxides/chemistry , Hydrocarbons, Halogenated/chemical synthesis , Isoindoles/chemistry , Algorithms , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Hydrocarbons, Halogenated/chemistry , Molecular Conformation , Molecular Structure , Nitrogen Oxides/chemistry , Thermodynamics
18.
J Magn Reson ; 191(1): 66-77, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18166493

ABSTRACT

Electron spin-lattice relaxation rates, 1/T1, at X-band of nitroxyl radicals (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-1-oxyl, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-oxyl and 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl) in glass-forming solvents (decalin, glycerol, 3-methylpentane, o-terphenyl, 1-propanol, sorbitol, sucrose octaacetate, and 1:1 water:glycerol) at temperatures between 100 and 300K were measured by long-pulse saturation recovery to investigate the relaxation processes in slow-to-fast tumbling regimes. A subset of samples was also studied at lower temperatures or at Q-band. Tumbling correlation times were calculated from continuous wave lineshapes. Temperature dependence and isotope substitution (2H and 15N) were used to distinguish the contributions of various processes. Below about 100K relaxation is dominated by the Raman process. At higher temperatures, but below the glass transition temperature, a local mode process makes significant contributions. Above the glass transition temperature, increased rates of molecular tumbling modulate nuclear hyperfine and g anisotropy. The contribution from spin rotation is very small. Relaxation rates at X-band and Q-band are similar. The dependence of 1/T1 on tumbling correlation times fits better with the Cole-Davidson spectral density function than with the Bloembergen-Purcell-Pound model.


Subject(s)
Complex Mixtures/chemistry , Glass/chemistry , Magnetic Resonance Spectroscopy/methods , Nitrogen Oxides/chemistry , Spectrum Analysis, Raman/methods , Electrons , Phase Transition , Solutions , Spin Labels , Temperature , Viscosity
19.
Org Biomol Chem ; 1(14): 2581-4, 2003 Jul 21.
Article in English | MEDLINE | ID: mdl-12956080

ABSTRACT

Here we describe the synthesis and characterisation of a new isoindole-based nitrone spin trap, 1,1,3-trimethylisoindole N-oxide (TMINO). This nitrone and its radical adducts (isoindoline nitroxides) exhibit enhanced stability with respect to other commonly used spin traps and their adducts. We also report EPR trapping studies of this new nitrone with some carbon- and oxygen-centred radicals including alkyl, aryl, hydroxyl and benzoyloxyl systems. The narrow EPR line-widths and stability of the resulting nitroxide spin adducts allowed the detection of the expected radicals as well as secondary and minor radical components in the reaction mixtures.

20.
Org Biomol Chem ; 1(14): 2585-9, 2003 Jul 21.
Article in English | MEDLINE | ID: mdl-12956081

ABSTRACT

The new EPR spin trap, 1,1,3-trimethylisoindole N-oxide (TMINO), very efficiently scavenges several Fenton-derived carbon- and oxygen-centred radicals including hydroxyl, formyl and alkyl radicals. The adducts display good stability and narrow EPR line-widths, allowing the detection of the expected radicals as well as two-dimensional (time-resolved) EPR experiments. Trapping experiments were also undertaken with superoxide radicals (giving no EPR signals) and nitric oxide (which gave strong EPR signals attributed to the action of higher oxides of nitrogen). The selectivity of TMINO towards HO. with respect to superoxide radicals demonstrates its potential as a useful spin-trap.


Subject(s)
Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy/methods , Hydroxyl Radical/chemistry , Indoles/chemistry , Spin Trapping/methods , Nitric Oxide/chemistry , Sensitivity and Specificity , Superoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...