Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Curr Top Med Chem ; 22(12): 973-991, 2022.
Article in English | MEDLINE | ID: mdl-35524665

ABSTRACT

BACKGROUND: Microbial resistance has become a worldwide public health problem and may lead to morbidity and mortality in affected patients. OBJECTIVES: Therefore, this work aimed to evaluate the antibacterial activity of quinone-4- oxoquinoline derivatives. METHODS: These derivatives were evaluated against Gram-positive and Gram-negative bacteria by their antibacterial activity, anti-biofilm, and hemolytic activities and in silico assays. RESULTS: The quinone-4-oxoquinoline derivatives presented broad-spectrum antibacterial activities and, in some cases, were more active than commercially available reference drugs. These compounds also inhibited bacterial adhesion, and the assays revealed seven non-hemolytic derivatives. The derivatives seem to cause damage to the bacterial cell membrane, and those containing the carboxyl group at the C-3 position of the 4-quinolonic nucleus were more active than those containing a carboxyethyl group. CONCLUSION: The isoquinoline-5,8-dione nucleus also favored antimicrobial activity. The study showed that the target of the derivatives must be a non-conventional hydrophobic allosteric binding pocket on the DNA gyrase enzyme.


Subject(s)
Gram-Negative Bacteria , Quinolones , 4-Quinolones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Humans , Microbial Sensitivity Tests , Quinolones/pharmacology , Quinones/pharmacology , Structure-Activity Relationship
2.
Curr Top Med Chem ; 20(3): 192-208, 2020.
Article in English | MEDLINE | ID: mdl-31868148

ABSTRACT

BACKGROUND: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. OBJECTIVE: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. METHODS: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and ß-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C - APT, 1H x 1H - COSY, HSQC and HMBC], IR and mass spectrometry analysis. RESULTS: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. CONCLUSION: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Indolequinones/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Humans , Indolequinones/chemical synthesis , Indolequinones/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure
3.
Molecules ; 20(6): 10689-704, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26065834

ABSTRACT

Herpes simplex virus infections have been described in the medical literature for centuries, yet the the drugs available nowadays for therapy are largely ineffective and low oral bioavailability plays an important role on the inefficacy of the treatments. Additionally, the details of the inhibition of Herpes Virus type 1 are still not fully understood. Studies have shown that several viruses encode one or more proteases required for the production new infectious virions. This study presents an analysis of the interactions between HSV-1 protease and benzoxazinone derivatives through a combination of structure-activity relationships, comparative modeling and molecular docking studies. The structure activity relationship results showed an important contribution of hydrophobic and polarizable groups and limitations for bulky groups in specific positions. Two Herpes Virus type 1 protease models were constructed and compared to achieve the best model which was obtained by MODELLER. Molecular docking results pointed to an important interaction between the most potent benzoxazinone derivative and Ser129, consistent with previous mechanistic data. Moreover, we also observed hydrophobic interactions that may play an important role in the stabilization of inhibitors in the active site. Finally, we performed druglikeness and drugscore studies of the most potent derivatives and the drugs currently used against Herpes virus.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzoxazines/chemistry , Benzoxazines/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/enzymology , Models, Molecular , Peptide Hydrolases/chemistry , Binding Sites , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Molecular Docking Simulation , Molecular Weight , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , Structure-Activity Relationship
4.
J Enzyme Inhib Med Chem ; 29(2): 256-62, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23477410

ABSTRACT

Recently the literature described the binding of Haptoglobin (HP) with ecotin, a fold-specific serine-proteases inhibitor with an anticoagulant profile and produced by Escherichia coli. In this work, we used some in silico and in vitro techniques to evaluate HP 3D-fold and its interaction with wild-type ecotin and two variants. Our data showed HP models conserved trypsin fold, in agreement to the in vitro immunological recognition of HP by trypsin antibodies. The analysis of the three ecotin-HP complexes using the mutants RR and TSRR/R besides the wild type revealed several hydrogen bonds between HP and ecotin secondary site. These data are in agreement with the in vitro PAGE assays that showed the HP-RR complex in native gel conditions. Interestingly, the ternary complex interactions varied depending on the inhibitor structure and site-directed mutation. The interaction of HP with TSRR/R involved new residues compared to wild type, which infers a binding energy increase caused by the mutation.


Subject(s)
Anticoagulants/chemistry , Escherichia coli Proteins/chemistry , Haptoglobins/chemistry , Models, Molecular , Periplasmic Proteins/chemistry , Serine Proteases/chemistry , Amino Acid Sequence , Animals , Escherichia coli Proteins/genetics , Haptoglobins/genetics , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Periplasmic Proteins/genetics , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Serine Proteases/genetics , Structure-Activity Relationship , Swine
5.
Mar Drugs ; 11(11): 4127-43, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24172210

ABSTRACT

AIDS is a pandemic responsible for more than 35 million deaths. The emergence of resistant mutations due to drug use is the biggest cause of treatment failure. Marine organisms are sources of different molecules, some of which offer promising HIV-1 reverse transcriptase (RT) inhibitory activity, such as the diterpenes dolabelladienotriol (THD, IC50 = 16.5 µM), (6R)-6-hydroxydichotoma-3,14-diene-1,17-dial (HDD, IC50 = 10 µM) and (6R)-6-acetoxydichotoma-3,14-diene-1,17-dial (ADD, IC50 = 35 µM), isolated from a brown algae of the genus Dictyota, showing low toxicity. In this work, we evaluated the structure-activity relationship (SAR) of THD, HDD and ADD as anti HIV-1 RT, using a molecular modeling approach. The analyses of stereoelectronic parameters revealed a direct relationship between activity and HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest Unoccupied Molecular Orbital) gap (E(LUMO)-E(HOMO)), where antiviral profile increases with larger HOMO-LUMO gap values. We also performed molecular docking studies of THD into HIV-1 RT wild-type and 12 different mutants, which showed a seahorse conformation, hydrophobic interactions and hydrogen bonds with important residues of the binding pocket. Based on in vitro experiments and docking studies, we demonstrated that mutations have little influence in positioning and interactions of THD. Following a rational drug design, we suggest a modification of THD to improve its biological activity.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Binding Sites , HIV-1/drug effects , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Molecular Docking Simulation/methods , Structure-Activity Relationship
6.
Rev. bras. farmacogn ; 22(4): 881-888, jul.-ago. 2012. ilus
Article in English | LILACS | ID: lil-640356

ABSTRACT

HIV-1 reverse transcriptase (HIV-1 RT) is a therapeutic target for the treatment of HIV-positive individuals or those already showing AIDS symptoms. In this perspective, the identification of new inhibitors for this enzyme is of great importance in view of the growing viral resistance to the existing treatments. This resistance has compromised the quality of life of those infected with multidrug-resistant strains, whose treatment options are already limited, putting at risk these individuals lives. The literature has recognized marine organisms and their products as natural sources for the identification of new therapeutic options for different pathologies. In this brief review, we consider the structure of HIV-1 RT and its most common inhibitors, as well as some marine diterpenes originally reported as HIV-1 RT inhibitors to encourage the identification and development of new marine antiviral prototypes.

7.
J Insect Physiol ; 55(9): 840-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19505471

ABSTRACT

Defensins are cysteine-rich peptides involved in the innate immunity of insects and many other organisms. In the present study, two novel defensin-encoding cDNAs and the respective genomic DNAs (def3 and def4) of Triatoma brasiliensis were identified and their tissue-specific and temporal expression was characterized. Both of the deduced mature peptides consisted of 43 amino acid residues and were highly similar to previously identified triatomine defensins (81.4-100%). Semi-quantitative RT-PCR data showed that def3 was constitutively expressed in the fat body and was induced in salivary glands and the small intestine at 5 and 3 days after feeding (daf), respectively. The def4 mRNA level was highly up-regulated in the stomach and fat-body tissues at 5 and 3 daf, respectively. The three-dimensional structures of these defensins were predicted using a homology modeling approach with Def-AAA, the defensin from Anopheles gambiae, as template (62-74% identity). A map of the electrostatic potential of these models revealed that, despite their similar folding patterns, mature Def2 and Def4 have a more cationic structure than is the case for Def1 and Def3. Such differences may orient the antimicrobial profile of these defensins against distinct targets in different organs of the insect.


Subject(s)
Chagas Disease/parasitology , Defensins/biosynthesis , Gene Expression Regulation , Insect Proteins/chemistry , Insect Vectors/genetics , Reduviidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Vectors/chemistry , Insect Vectors/metabolism , Molecular Conformation , Molecular Sequence Data , Phylogeny , Protein Binding , Reduviidae/chemistry , Reduviidae/classification , Reduviidae/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...