Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 20(6): 10689-704, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26065834

ABSTRACT

Herpes simplex virus infections have been described in the medical literature for centuries, yet the the drugs available nowadays for therapy are largely ineffective and low oral bioavailability plays an important role on the inefficacy of the treatments. Additionally, the details of the inhibition of Herpes Virus type 1 are still not fully understood. Studies have shown that several viruses encode one or more proteases required for the production new infectious virions. This study presents an analysis of the interactions between HSV-1 protease and benzoxazinone derivatives through a combination of structure-activity relationships, comparative modeling and molecular docking studies. The structure activity relationship results showed an important contribution of hydrophobic and polarizable groups and limitations for bulky groups in specific positions. Two Herpes Virus type 1 protease models were constructed and compared to achieve the best model which was obtained by MODELLER. Molecular docking results pointed to an important interaction between the most potent benzoxazinone derivative and Ser129, consistent with previous mechanistic data. Moreover, we also observed hydrophobic interactions that may play an important role in the stabilization of inhibitors in the active site. Finally, we performed druglikeness and drugscore studies of the most potent derivatives and the drugs currently used against Herpes virus.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzoxazines/chemistry , Benzoxazines/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/enzymology , Models, Molecular , Peptide Hydrolases/chemistry , Binding Sites , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Molecular Docking Simulation , Molecular Weight , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , Structure-Activity Relationship
2.
Mar Drugs ; 11(11): 4127-43, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24172210

ABSTRACT

AIDS is a pandemic responsible for more than 35 million deaths. The emergence of resistant mutations due to drug use is the biggest cause of treatment failure. Marine organisms are sources of different molecules, some of which offer promising HIV-1 reverse transcriptase (RT) inhibitory activity, such as the diterpenes dolabelladienotriol (THD, IC50 = 16.5 µM), (6R)-6-hydroxydichotoma-3,14-diene-1,17-dial (HDD, IC50 = 10 µM) and (6R)-6-acetoxydichotoma-3,14-diene-1,17-dial (ADD, IC50 = 35 µM), isolated from a brown algae of the genus Dictyota, showing low toxicity. In this work, we evaluated the structure-activity relationship (SAR) of THD, HDD and ADD as anti HIV-1 RT, using a molecular modeling approach. The analyses of stereoelectronic parameters revealed a direct relationship between activity and HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest Unoccupied Molecular Orbital) gap (E(LUMO)-E(HOMO)), where antiviral profile increases with larger HOMO-LUMO gap values. We also performed molecular docking studies of THD into HIV-1 RT wild-type and 12 different mutants, which showed a seahorse conformation, hydrophobic interactions and hydrogen bonds with important residues of the binding pocket. Based on in vitro experiments and docking studies, we demonstrated that mutations have little influence in positioning and interactions of THD. Following a rational drug design, we suggest a modification of THD to improve its biological activity.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Binding Sites , HIV-1/drug effects , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Molecular Docking Simulation/methods , Structure-Activity Relationship
3.
Rev. bras. farmacogn ; 22(4): 881-888, jul.-ago. 2012. ilus
Article in English | LILACS | ID: lil-640356

ABSTRACT

HIV-1 reverse transcriptase (HIV-1 RT) is a therapeutic target for the treatment of HIV-positive individuals or those already showing AIDS symptoms. In this perspective, the identification of new inhibitors for this enzyme is of great importance in view of the growing viral resistance to the existing treatments. This resistance has compromised the quality of life of those infected with multidrug-resistant strains, whose treatment options are already limited, putting at risk these individuals lives. The literature has recognized marine organisms and their products as natural sources for the identification of new therapeutic options for different pathologies. In this brief review, we consider the structure of HIV-1 RT and its most common inhibitors, as well as some marine diterpenes originally reported as HIV-1 RT inhibitors to encourage the identification and development of new marine antiviral prototypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...