Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 225(4): e13211, 2019 04.
Article in English | MEDLINE | ID: mdl-30347138

ABSTRACT

AIM: Major depressive disorder is a common and debilitating condition with substantial economic impact. Treatment options, although effective, are aimed at relieving the symptoms with limited disease modification. Ketamine, a commonly used anaesthetic, has received substantial attention as it shows rapid antidepressant effects clinically. We studied the effects of ketamine on hippocampal function and dentate gyrus proliferation in rats showing a depressive-like phenotype. METHODS: Adolescent and adult animals were pre-natally exposed to the glucocorticoid analog dexamethasone, and we verified a depressive-like phenotype using behavioural tests, such as the sucrose preference. We subsequently studied the effects of ketamine on hippocampal synaptic transmission, plasticity and dentate gyrus proliferation. In addition, we measured hippocampal glutamate receptor expression. We also tested the ketamine metabolite hydroxynorketamine for NMDA-receptor independent effects. RESULTS: Surprisingly, our extensive experimental survey revealed limited effects of ketamine or its metabolite on hippocampal function in control as well as depressive-like animals. We found no effects on synaptic efficacy or induction of long-term potentiation in adolescent and adult animals. Also there was no difference when comparing the dorsal and ventral hippocampus. Importantly, however, ketamine 24 hours prior to experimentation significantly increased the dentate gyrus proliferation, as revealed by Ki-67 immunostaining, in the depressive-like phenotype. CONCLUSION: We find limited effects of ketamine on hippocampal glutamatergic transmission. Instead, alterations in dentate gyrus proliferation could explain the antidepressant effects of ketamine.


Subject(s)
Dentate Gyrus/drug effects , Depressive Disorder, Major/drug therapy , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Neuronal Plasticity/drug effects , Animals , Depressive Disorder, Major/chemically induced , Dexamethasone , Disease Models, Animal , Drug Evaluation, Preclinical , Excitatory Amino Acid Antagonists/therapeutic use , Female , Ketamine/therapeutic use , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...