Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Toxicol Ind Health ; 40(1-2): 41-51, 2024.
Article in English | MEDLINE | ID: mdl-37984499

ABSTRACT

Lead is one of the heavy metals that is toxic and widely distributed in the environment, and children are more sensitive to the toxic effects of lead because the blood-brain barrier and immune system are not yet well developed. The objective of the study was to investigate the clinical characteristics of lead poisoning in children aged 0∼6 years in a hospital in Guangxi, and to provide scientific basis for the prevention and treatment of lead poisoning. We collected and analyzed the clinical data of 32 children with lead poisoning admitted to a hospital in Guangxi from 2010 to 2018. The results showed that most of the 32 cases presented with hyperactivity, irritability, poor appetite, abdominal pain, diarrhea, or constipation. The hemoglobin (HGB), mean corpusular volume (MCV), mean corpuscular hemoglobin (MCH), and hematocrit (HCT) of the lead-poisoned children were all decreased to different degrees and were below normal acceptable levels. Urinary ß2-microglobulin was increased. Blood lead levels (BLL) decreased significantly after intravenous injection of the lead chelator, calcium disodium edetate (CaNa2-EDTA). In addition, HGB returned to normal levels, while MCV, MCH, and HCT increased but remained below normal levels. Urinary ß2-microglobulin was reduced to normal levels. Therefore, in this cohort of children, the high-risk factors for lead poisoning are mainly Chinese medicines, such as baby powder. In conclusion, lead poisoning caused neurological damage and behavioral changes in children and decreased erythrocyte parameters, leading to digestive symptoms and renal impairment, which can be attenuated by CaNa2-EDTA treatment.


Subject(s)
Lead Poisoning , Lead , Child , Infant , Humans , Lead/toxicity , China/epidemiology , Edetic Acid , Lead Poisoning/epidemiology , Lead Poisoning/etiology , Hematocrit , Hemoglobins
2.
Toxicology ; 314(1): 95-9, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24060432

ABSTRACT

Manganese (Mn) can cause manganism, a neurological disorder similar to Parkinson' Disease (PD). The neurobehavioral and neuroinflammatory end-points in the Mn post exposure period have not been studied yet. Rats were injected on alternate days with 8 doses of MnCl2 (25mg/kg) or saline, then euthanized 1, 10, 30 or 70 days following the last dose. Whole-blood (WB) (p<0.05), urine (p<0.05) and brain cortical (p<0.0001) Mn levels were significantly increased 24h after the last dose. Decreases in the rats' ambulation were noted 1, 10 and 30 days after the last Mn dose (p<0.001; p<0.05; p<0.001, respectively) and also in the rearing activity at the four time-points (p<0.05). Cortical glial fibrillary acid protein immunoreactivity (GFAP-ir) was significantly increased at 1, 10, 30 (p<0.0001) and 70 (p<0.001) days after the last Mn dose, as well as tumor necrosis α (TNF-α) levels (p<0.05) but just on day 1. Taken together, the results show that, during the 70-day clearance phase of Mn, the recovery is not immediate as behavioral alterations and neuroinflammation persist long after Mn is cleared from the cortical brain compartment.


Subject(s)
Behavior, Animal/drug effects , Inflammation/pathology , Manganese Poisoning/pathology , Manganese Poisoning/psychology , Animals , Brain/metabolism , Cerebral Cortex/chemistry , Cerebral Cortex/metabolism , Chlorides , Dose-Response Relationship, Drug , Endpoint Determination , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Inflammation/chemically induced , Male , Manganese/blood , Manganese/metabolism , Manganese/urine , Manganese Compounds , Motor Activity/drug effects , Rats , Rats, Wistar , Spectrophotometry, Atomic
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-100598

ABSTRACT

Manganese (Mn) is an essential element that is required in trace amount for normal growth, development as well maintenance of proper function and regulation of numerous cellular and biochemical reactions. Yet, excessive Mn brain accumulation upon chronic exposure to occupational or environmental sources of this metal may lead to a neurodegenerative disorder known as manganism, which shares similar symptoms with idiopathic Parkinson's disease (PD). In recent years, Mn exposure has gained public health interest for two primary reasons: continuous increased usage of Mn in various industries, and experimental findings on its toxicity, linking it to a number of neurological disorders. Since the first report on manganism nearly two centuries ago, there have been substantial advances in the understanding of mechanisms associated with Mn-induced neurotoxicity. This review will briefly highlight various aspects of Mn neurotoxicity with a focus on the role of astrocytic glutamate transporters in triggering its pathophysiology.


Subject(s)
Astrocytes , Brain , Glutamic Acid , Manganese , Nervous System Diseases , Neurodegenerative Diseases , Parkinson Disease , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...