Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798488

ABSTRACT

Objective: Pharmacologic inhibition of the mechanistic target of rapamycin (mTOR) can attenuate experimental osteoarthritis (OA) in young, male preclinical models. However, the potential of mTOR inhibition as a therapeutic mechanism for OA remains unknown. The goal of this study was to determine if mTOR-inhibition by oral rapamycin can modify OA pathology in the common marmoset, a translational model of age-associated OA. Methods: microCT and histopathologic assessments of the knee were performed on formalin-fixed hindlimbs obtained from common marmosets treated with oral rapamycin (n=24; 1mg/kg/day) or parallel control group (n=41). Rapamycin started at 9.2±3.0 years old and lasted until death (2.1±1.5 years). In a subset of marmosets, contralateral hind limbs were collected to determine mTOR signaling in several joint tissues. Results: Rapamycin decreased P-RPS6Ser235/36 and increased P-Akt2Ser473 in cartilage, meniscus, and infrapatellar fat pad, suggesting inhibition of mTORC1 but not mTORC2 signaling. Rapamycin-treated marmosets had lower lateral synovium score versus control but there was no difference in the age-related increase in microCT or cartilage OA scores. Subchondral bone thickness and thickness variability were not different with age but were lower in rapamycin-treated geriatric marmosets, which was largely driven by females. Rapamycin also tended to worsen age-related meniscus calcification in female marmosets. Conclusion: Oral rapamycin attenuated mTORC1 signaling and may have caused feedback activation of mTORC2 signaling in joint tissues. Despite modifying site-specific aspects of synovitis, rapamycin did not modify the age-associated increase in OA in geriatric marmosets. Conversely, rapamycin may have had deleterious effects on meniscus calcification and lateral tibia subchondral bone, primarily in geriatric female marmosets.

2.
Geroscience ; 46(3): 2827-2847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466454

ABSTRACT

Age-related osteoarthritis (OA) is a degenerative joint disease characterized by pathological changes in nearly every intra- and peri-articular tissue that contributes to disability in older adults. Studying the etiology of age-related OA in humans is difficult due to an unpredictable onset and insidious nature. A barrier in developing OA modifying therapies is the lack of translational models that replicate human joint anatomy and age-related OA progression. The purpose of this study was to determine whether the common marmoset is a faithful model of human age-related knee OA. Semi-quantitative microCT scoring revealed greater radiographic OA in geriatric versus adult marmosets, and the age-related increase in OA prevalence was similar between marmosets and humans. Quantitative assessments indicate greater medial tibial cortical and trabecular bone thickness and heterogeneity in geriatric versus adult marmosets which is consistent with an age-related increase in focal subchondral bone sclerosis. Additionally, marmosets displayed an age-associated increase in synovitis and calcification of the meniscus and patella. Histological OA pathology in the medial tibial plateau was greater in geriatric versus adult marmosets driven by articular cartilage damage, proteoglycan loss, and altered chondrocyte cellularity. The age-associated increase in medial tibial cartilage OA pathology and meniscal calcification was greater in female versus male geriatric marmosets. Overall, marmosets largely replicate human OA as evident by similar 1) cartilage and skeletal morphology, 2) age-related progression in OA pathology, and 3) sex differences in OA pathology with increasing age. Collectively, these data suggest that the common marmoset is a highly translatable model of the naturally occurring, age-related OA seen in humans.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Animals , Male , Female , Humans , Aged , Callithrix , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/epidemiology , Osteoarthritis, Knee/pathology , Knee Joint/pathology , Cartilage, Articular/pathology , Tibia/diagnostic imaging , Tibia/pathology
3.
J Biomech ; 159: 111779, 2023 10.
Article in English | MEDLINE | ID: mdl-37703719

ABSTRACT

Wheelchair users (WCUs) face high rates of shoulder overuse injuries. As exercise is recommended to reduce cardiovascular disease prevalent among WCUs, it is becoming increasingly important to understand the mechanisms behind shoulder soft-tissue injury in WCUs. Understanding the kinetics and kinematics during upper-limb propulsion is the first step toward evaluating soft-tissue injury risk in WCUs. This paper examines continuous kinetic and kinematic data available in the literature. Attach-unit and recumbent handcycling are examined and compared. Athletic modes of propulsion such as recumbent handcycling are important considering the higher contact forces, speed, and power outputs experienced during these activities that could put users at increased risk of injury. Understanding the underlying kinetics and kinematics during various propulsion modes can lend insight into shoulder loading, and therefore injury risk, during these activities and inform future exercise guidelines for WCUs.


Subject(s)
Soft Tissue Injuries , Sports , Wheelchairs , Humans , Biomechanical Phenomena , Shoulder , Upper Extremity , Kinetics
4.
J Biomech ; 156: 111672, 2023 07.
Article in English | MEDLINE | ID: mdl-37336187

ABSTRACT

People with spinal cord injuries (PwSCI) are at high risk of developing cardiovascular disease (CVD). While regular exercise can reduce risk of CVD, PwSCI face various barriers to exercise, including high rates of upper limb injuries, especially in the shoulder. Handcycling high intensity interval training (HIIT), which consists of periods of high intensity exercise followed by rest, is a potential exercise solution, but the musculoskeletal safety of HIIT is still unknown. In this study, we characterized three-dimensional continuous applied forces at the handle during handcycling HIIT and moderate intensity continuous training (MICT). These applied forces can give an early indication of joint loading, and therefore injury risk, at the shoulder. In all three directions (tangential, radial, and lateral), the maximum applied forces during HIIT were larger than those in MICT at all timepoints, which may indicate higher contact forces and loads on the shoulder during HIIT compared to MICT. The tangential and radial forces peaked twice in a propulsion cycle, while the lateral forces peaked once. Throughout the exercises, the location of tangential peak 2 and radial peak 1 was later in HIIT compared to MICT. This difference in maximum force location could indicate either altered kinematics or muscular fatigue at the end of the exercise protocol. These changes in kinematics should be more closely examined using motion capture or other modeling techniques. If we combine this kinetic data with kinematic data during propulsion, we can create musculoskeletal models that more accurately predict contact forces and injury risk during handcycling HIIT in PwSCI.


Subject(s)
Cardiovascular Diseases , Spinal Cord Injuries , Humans , Kinetics , Exercise , Exercise Therapy , Shoulder
5.
Faraday Discuss ; 239(0): 70-84, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35822567

ABSTRACT

Cu2ZnSn(S,Se)4 (CZTSSe) is a promising material for thin-film photovoltaics, however, the open-circuit voltage (VOC) deficit of CZTSSe prevents the device performance from exceeding 13% conversion efficiency. CZTSSe is a heavily compensated material that is rich in point defects and prone to the formation of secondary phases. The landscape of these defects is complex and some mitigation is possible by employing non-stoichiometric conditions. Another route used to reduce the effects of undesirable defects is the doping and alloying of the material to suppress certain defects and improve crystallization, such as with germanium. The majority of works deposit Ge adjacent to a stacked metallic precursor deposited by physical vapour deposition before annealing in a selenium rich atmosphere. Here, we use an established hot-injection process to synthesise Cu2ZnSnS4 nanocrystals of a pre-determined composition, which are subsequently doped with Ge during selenisation to aid recrystallisation and reduce the effects of Sn species. Through Ge incorporation, we demonstrate structural changes with a negligible change in the energy bandgap but substantial increases in the crystallinity and grain morphology, which are associated with a Ge-Se growth mechanism, and gains in both the VOC and conversion efficiency. We use surface energy-filtered photoelectron emission microscopy (EF-PEEM) to map the surface work function terrains and show an improved electronic landscape, which we attribute to a reduction in the segregation of low local effective work function (LEWF) Sn(II) chalcogenide phases.

6.
Front Chem ; 10: 920676, 2022.
Article in English | MEDLINE | ID: mdl-35844645

ABSTRACT

Developing effective device architectures for energy technologies-such as solar cells, rechargeable batteries or fuel cells-does not only depend on the performance of a single material, but on the performance of multiple materials working together. A key part of this is understanding the behaviour at the interfaces between these materials. In the context of a solar cell, efficient charge transport across the interface is a pre-requisite for devices with high conversion efficiencies. There are several methods that can be used to simulate interfaces, each with an in-built set of approximations, limitations and length-scales. These methods range from those that consider only composition (e.g. data-driven approaches) to continuum device models (e.g. drift-diffusion models using the Poisson equation) and ab-initio atomistic models (developed using e.g. density functional theory). Here we present an introduction to interface models at various levels of theory, highlighting the capabilities and limitations of each. In addition, we discuss several of the various physical and chemical processes at a heterojunction interface, highlighting the complex nature of the problem and the challenges it presents for theory and simulation.

13.
Am J Obstet Gynecol ; 107(2): 188-93, 1970 May 15.
Article in English | MEDLINE | ID: mdl-5441699

ABSTRACT

PIP: Rabbit uterine motility pattern changes in the presence of an IUD were recorded with extraluminal contractile force transducers. The possible subsequent effects of uterine motility changes upon fetal degradation were observed. At 16 days postcoitus, 88% of the ova implanted in the IUD horn and 56% of the fetuses were viable; in the control horn 94% of the ova were implanted and 71% of the fetuses were viable. Control horns had a greater mean contractile force for longitudinal muscle and mean frequency for circular muscle was greater than the frequency for longitudinal muscle during all time intervals. Mean contractile force in IUD horns was not statistically different for the two uterine muscle layers. Motility indexes which sampled overall estrous motility were not statistically different for control and IUD horns. Mean frequency of the longitudinal muscle in the IUD horn was greater than that recorded for the control horn during both pregnancy intervals (p.001). Contractile force differences between horns were not significant for longitudinal muscle. Circular layer contractile force differences (IUD horn control horn) were significant for both horns (p.001 or p.02) during both pregnancy intervals. Differences (IUD horn control horn) in the longitudinal motility index were significant (p.001) only during 1 pregnancy interval. It is concluded that the local IUD effect upon fetal mortality is not due to corpora lutea degeneration but may be due to differential decrease in discrete local uterine contractile activity occurring after the sixth day postcoitus.^ieng


Subject(s)
Intrauterine Devices , Muscle Contraction , Uterus/physiology , Animals , Copulation , Embryo Implantation , Embryonic and Fetal Development , Estrus , Female , Fetal Death , Pregnancy , Rabbits , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...