Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
RSC Med Chem ; 15(3): 1038-1045, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516591

ABSTRACT

In this paper, we present the design and synthesis of a novel series of pyrido[2,3-d]pyridazine-2,8-dione derivatives via the annulation of the 2-pyridone pattern. The synthesized derivatives were evaluated for in vivo anti-inflammatory activity using an ear edema model. Compound 7c, which showed a greater inhibition of ear edema (82%), was further tested for its in vitro COX-1/COX-2 inhibitory activity. Compound 7c showed similar inhibitory activities against COX-1 and COX-2 isoenzymes. The structural features that ensure the dual inhibition of COX-1 and COX-2 were elucidated using molecular docking studies. Overall, the ring closing of 2-pyridone pattern I transformed this highly selective COX-2 inhibitor into a dual COX inhibitor (7c), which could serve as a model for determining selectivity for COX-2.

2.
J Org Chem ; 87(13): 8544-8550, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35687873

ABSTRACT

A simple, efficient and highly regioselective method for the preparation of 3,4- and 4,5-disubstituted N-methylpyrazoles in a one-pot procedure is reported. The methodology developed was based on the regiochemical control of the reaction of 4-acyl-1H-pyrrole-2,3-diones and methylhydrazine with an influence of the addition or absence of acid and the substrate structure.


Subject(s)
Monomethylhydrazine , Pyrroles , Pyrroles/chemistry
3.
NPJ Regen Med ; 7(1): 34, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773290

ABSTRACT

The biomaterial fibrin is widely used as a clinical tissue sealant in surgery. In preclinical research, fibrin is also extensively studied as a carrier material for growth factor delivery. In these applications, premature fibrin degradation leads to recurrent bleeding, tissue dehiscence and limited regenerative efficacy. Therefore, fibrinolysis inhibitors have been added to clinical fibrin formulations, for example the bovine-derived serine protease inhibitor aprotinin. Aprotinin is additionally used as a hemostatic agent to prevent excessive bleeding during surgery, in this case protecting endogenous fibrin clots. Nevertheless, aprotinin use has been associated with serious safety issues. Here, we explore the use the human physiological fibrinolysis inhibitor α2-antiplasmin (α2PI) as a substitute for aprotinin. We evaluate the efficacy of α2PI in the three main applications of aprotinin. We first showed that recombinant α2PI can successfully prolong the durability of fibrin biomaterials as compared to aprotinin in a model of subcutaneous implantation in mice mimicking application as a tissue sealant. We then used α2PI to enhance the delivery of engineered vascular endothelial growth factor (VEGF)-A and platelet-derived growth factor (PDGF)-BB in fibrin in promoting diabetic wound healing, which lead to improved wound closure, granulation tissue formation and angiogenesis. Lastly, we demonstrated that α2PI can be as effective as aprotinin as an intravenous hemostatic agent to prevent blood loss, using a tail-vein bleeding model in mice. Therefore, we believe that engineering fibrin biomaterials or endogenous fibrin with α2PI can have a strong impact in surgery and regenerative medicine by providing a competitive substitute to aprotinin that is of human origin.

4.
Kidney Int ; 101(5): 845-853, 2022 05.
Article in English | MEDLINE | ID: mdl-35276204

ABSTRACT

Acute kidney injury impacts âˆ¼13.3 million individuals and causes âˆ¼1.7 million deaths per year globally. Numerous injury pathways contribute to acute kidney injury, including cell cycle arrest, senescence, inflammation, mitochondrial dysfunction, and endothelial injury and dysfunction, and can lead to chronic inflammation and fibrosis. However, factors enabling productive repair versus nonproductive, persistent injury states remain less understood. The (Re)Building a Kidney (RBK) consortium is a National Institute of Diabetes and Digestive and Kidney Diseases consortium focused on both endogenous kidney repair mechanisms and the generation of new kidney tissue. This short review provides an update on RBK studies of endogenous nephron repair, addressing the following questions: (i) What is productive nephron repair? (ii) What are the cellular sources and drivers of repair? and (iii) How do RBK studies promote development of therapeutics? Also, we provide a guide to RBK's open access data hub for accessing, downloading, and further analyzing data sets.


Subject(s)
Acute Kidney Injury , Kidney , Acute Kidney Injury/pathology , Female , Fibrosis , Humans , Inflammation/pathology , Kidney/pathology , Male , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Regeneration , United States
5.
NPJ Regen Med ; 6(1): 76, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795305

ABSTRACT

Chronic non-healing wounds, frequently caused by diabetes, lead to lower quality of life, infection, and amputation. These wounds have limited treatment options. We have previously engineered growth factors to bind to exposed extracellular matrix (ECM) in the wound environment using the heparin-binding domain of placental growth factor-2 (PlGF-2123-144), which binds promiscuously to ECM proteins. Here, in the type 1 diabetic (T1D) NOD mouse model, engineered growth factors (eGFs) improved both re-epithelialization and granulation tissue formation. eGFs were even more potent in combination, and the "triple therapy" of vascular endothelial growth factor-A (VEGF-PlGF-2123-144), platelet-derived growth factor-BB (PDGF-BB-PlGF-2123-144), and heparin-binding epidermal growth factor (HB-EGF-PlGF-2123-144) both improved wound healing and remained at the site of administration for significantly longer than wild-type growth factors. In addition, we also found that changes in the cellular milieu of a wound, including changing amounts of M1 macrophages, M2 macrophages and effector T cells, are most predictive of wound-healing success in the NOD mouse model. These results suggest that the triple therapy of VEGF-PlGF-2123-144, PDGF-BB-PlGF-2123-144, and HB-EGF-PlGF-2123-144 may be an effective therapy for chronic non-healing wounds in that occur as a complication of diabetes.

6.
Bioorg Chem ; 114: 105082, 2021 09.
Article in English | MEDLINE | ID: mdl-34147880

ABSTRACT

Trypanosoma cruzi and Leishmania species are causative agents of Chagas disease and Leishmaniasis, respectively, known as Neglected Tropical Diseases. Up to now, the treatments are inadequate and based on old drugs. Thus, we report herein the discovery of 1,3,4,5-tetrasubstituted pyrazole derivatives that presented potent and selective inhibition against promastigote forms of L. amazonensis, and epimastigote forms of T. cruzi. The structure-activity relationship led to the identification of three compounds (2m, 2n and 2p) with an in vitro IC50 of 7.4 µM (selective index - SI ≥ 133.0), 3.8 µM (SI in the range of 148.4 to 200.8), and 7.3 µM (SI in the range of 87.2 to 122.4) against L. amazonensis, respectively. Also, those compounds exhibited in vitro IC50 of 9.7 µM (SI ≥ 101.5), 4.5 µM (SI in the range of 125.3 to 169.6) and 17.1 µM (SI in the range of 37.2 to 52.2) against T. cruzi, respectively. A preliminary study about the reaction mechanism in promastigotes showed that 2n caused an increase of the production of ROS and of lipid storage bodies. Furthermore, 2n induced abnormalities in the flagellum that may have an impact on the parasite motility.


Subject(s)
Drug Discovery , Leishmania/drug effects , Pyrazoles/pharmacology , Trypanocidal Agents/pharmacology , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
7.
Bioorg Med Chem ; 29: 115835, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33214037

ABSTRACT

A new one-pot two-step sequential methodology for synthesis of novel 3-carboxyethyl 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives is reported. One-pot transformation of ß-enamino diketones and arylhydrazines generated 4-iminium-N-arylpyrazole salt intermediates in situ, which were easily transformed into 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives by NaBH3CN. The products could be isolated in the free or hydrochloride salt forms. Also, it was possible to obtain the products in the zwitterionic form by ester group hydrolysis. Furthermore, all synthesised compounds were evaluated in vitro against a panel of eight human tumor cell lines. The 4-[(tert-butylamino)methyl]-N-arylpyrazole derivatives were much more powerful than the hydrochloride and zwitterionic forms. Moreover, the results suggest that the N-aryl group at the pyrazole ring is vital for modulating antiproliferative activity. The 3-carboxyethyl 4-[(tert-butylamino)methyl]-N-phenylpyrazoles 3a-g exhibited higher inhibitory activities against OVCAR-3, with GI50 values of 0.013-8.78 µM, and lower inhibitory activities against normal human cell lines. Molecular docking was performed to evaluate the probable binding mode of 3a into active site of CDK2.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Ovarian Neoplasms/drug therapy , Pyrazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Docking Simulation , Molecular Structure , Ovarian Neoplasms/pathology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
8.
Drug Dev Res ; 82(2): 230-240, 2021 04.
Article in English | MEDLINE | ID: mdl-32996619

ABSTRACT

In this article, a series of 29 new pyrimidine N-acylhydrazone hybrids were synthesized and evaluated in vitro against Leishmania amazonensis and Trypanosoma cruzi protozoa that cause the neglected diseases cutaneous leishmaniasis and Chagas disease, respectively. Eight of the target compounds showed significant antiprotozoal activities with IC50 values in 4.3-33.6 µM range. The more active compound 4f exhibited selectivity index greater than 15 and drug-like properties based on Lipinski's rule.


Subject(s)
Antiparasitic Agents/pharmacology , Hydrazones/pharmacology , Leishmania braziliensis/drug effects , Pyrimidines/pharmacology , Trypanosoma cruzi/drug effects , Animals , Antiparasitic Agents/chemistry , Humans , Hydrazones/chemistry , Leishmania braziliensis/physiology , Pyrimidines/chemistry , Trypanosoma cruzi/physiology
9.
Anim Microbiome ; 2(1): 24, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-33499993

ABSTRACT

BACKGROUND: Stereotyped sunning behaviour in birds has been hypothesized to inhibit keratin-degrading bacteria but there is little evidence that solar irradiation affects community assembly and abundance of plumage microbiota. The monophyletic New World vultures (Cathartiformes) are renowned for scavenging vertebrate carrion, spread-wing sunning at roosts, and thermal soaring. Few avian species experience greater exposure to solar irradiation. We used 16S rRNA sequencing to investigate the plumage microbiota of wild individuals of five sympatric species of vultures in Guyana. RESULTS: The exceptionally diverse plumage microbiotas (631 genera of Bacteria and Archaea) were numerically dominated by bacterial genera resistant to ultraviolet (UV) light, desiccation, and high ambient temperatures, and genera known for forming desiccation-resistant endospores (phylum Firmicutes, order Clostridiales). The extremophile genera Deinococcus (phylum Deinococcus-Thermus) and Hymenobacter (phylum, Bacteroidetes), rare in vertebrate gut microbiotas, accounted for 9.1% of 2.7 million sequences (CSS normalized and log2 transformed). Five bacterial genera known to exhibit strong keratinolytic capacities in vitro (Bacillus, Enterococcus, Pseudomonas, Staphylococcus, and Streptomyces) were less abundant (totaling 4%) in vulture plumage. CONCLUSIONS: Bacterial rank-abundance profiles from melanized vulture plumage have no known analog in the integumentary systems of terrestrial vertebrates. The prominence of UV-resistant extremophiles suggests that solar irradiation may play a significant role in the assembly of vulture plumage microbiotas. Our results highlight the need for controlled in vivo experiments to test the effects of UV on microbial communities of avian plumage.

10.
Org Lett ; 21(16): 6325-6328, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31353911

ABSTRACT

An efficient one-pot method is described for the highly regioselective synthesis of α-ketoamide N-arylpyrazoles from secondary ß-enamino diketones. For this, the key intermediate, 4-acyl 3,5-dihydroxypyrrolone, was generated in situ and underwent bimolecular nucleophilic substitution at C-5 by arylhydrazine, with subsequent heterocyclization at the carbonyl carbon of the acyl group. This strategy allowed for regiochemical control of α-ketoamide N-arylpyrazoles from ß-enamino diketones and arylhydrazines.

11.
Blood ; 133(24): 2559-2569, 2019 06 13.
Article in English | MEDLINE | ID: mdl-30975637

ABSTRACT

During wound healing, the distribution, availability, and signaling of growth factors (GFs) are orchestrated by their binding to extracellular matrix components in the wound microenvironment. Extracellular matrix proteins have been shown to modulate angiogenesis and promote wound healing through GF binding. The hemostatic protein von Willebrand factor (VWF) released by endothelial cells (ECs) in plasma and in the subendothelial matrix has been shown to regulate angiogenesis; this function is relevant to patients in whom VWF deficiency or dysfunction is associated with vascular malformations. Here, we show that VWF deficiency in mice causes delayed wound healing accompanied by decreased angiogenesis and decreased amounts of angiogenic GFs in the wound. We show that in vitro VWF binds to several GFs, including vascular endothelial growth factor-A (VEGF-A) isoforms and platelet-derived growth factor-BB (PDGF-BB), mainly through the heparin-binding domain (HBD) within the VWF A1 domain. VWF also binds to VEGF-A and fibroblast growth factor-2 (FGF-2) in human plasma and colocalizes with VEGF-A in ECs. Incorporation of the VWF A1 HBD into fibrin matrices enables sequestration and slow release of incorporated GFs. In vivo, VWF A1 HBD-functionalized fibrin matrices increased angiogenesis and GF retention in VWF-deficient mice. Treatment of chronic skin wounds in diabetic mice with VEGF-A165 and PDGF-BB incorporated within VWF A1 HBD-functionalized fibrin matrices accelerated wound healing, with increased angiogenesis and smooth muscle cell proliferation. Therefore, the VWF A1 HBD can function as a GF reservoir, leading to effective angiogenesis and tissue regeneration.


Subject(s)
Neovascularization, Physiologic/physiology , Wound Healing/physiology , von Willebrand Factor/metabolism , Animals , Diabetes Mellitus, Experimental , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Protein Domains
12.
Anim Microbiome ; 1(1): 2, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-33499946

ABSTRACT

BACKGROUND: Current knowledge about seasonal variation in the gut microbiota of vertebrates is limited to a few studies based on mammalian fecal samples. Seasonal changes in the microbiotas of functionally distinct gut regions remain unexplored. We investigated seasonal variation (summer versus winter) and regionalization of the microbiotas of the crop, ventriculus, duodenum, cecum, and colon of the greater sage-grouse (Centrocercus urophasianus), an avian folivore specialized on the toxic foliage of sagebrush (Artemesia spp.) in western North America. RESULTS: We sequenced the V4 region of the 16S rRNA gene on an Illumina MiSeq and obtained 6,639,051 sequences with a median of 50,232 per sample. These sequences were assigned to 457 bacterial and 4 archaeal OTUs. Firmicutes (53.0%), Bacteroidetes (15.2%), Actinobacteria (10.7%), and Proteobacteria (10.1%)were the most abundant and diverse phyla. Microbial composition and richness showed significant differences among gut regions and between summer and winter. Gut region explained almost an order of magnitude more variance in our dataset than did season or the gut region × season interaction. The effect of season was uneven among gut regions. Microbiotas of the crop and cecum showed the greatest seasonal differences. CONCLUSIONS: Our data suggest that seasonal differences in gut microbiota reflect seasonal variation in the microbial communities associated with food and water. Strong differentiation and uneven seasonal changes in the composition and richness of the microbiota among functionally distinct gut regions demonstrate the necessity of wider anatomical sampling for studies of composition and dynamics of the gut microbiota.

13.
Nat Commun ; 9(1): 2163, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867149

ABSTRACT

Laminin, as a key component of the basement membrane extracellular matrix (ECM), regulates tissue morphogenesis. Here, we show that multiple laminin isoforms promiscuously bind to growth factors (GFs) with high affinity, through their heparin-binding domains (HBDs) located in the α chain laminin-type G (LG) domains. These domains also bind to syndecan cell-surface receptors, promoting attachment of fibroblasts and endothelial cells. We explore the application of these multifunctional laminin HBDs in wound healing in the type-2 diabetic mouse. We demonstrate that covalent incorporation of laminin HBDs into fibrin matrices improves retention of GFs and significantly enhances the efficacy of vascular endothelial cell growth factor (VEGF-A165) and platelet-derived growth factor (PDGF-BB) in promoting wound healing in vivo, under conditions where the GFs alone in fibrin are inefficacious. This laminin HBD peptide may be clinically useful by improving biomaterial matrices as both GF reservoirs and cell scaffolds, leading to effective tissue regeneration.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Heparin/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Laminin/metabolism , Peptides/metabolism , Animals , Binding Sites , Cells, Cultured , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Fibrin , Humans , Male , Mice, Inbred C57BL , Protein Binding , Skin/injuries , Wound Healing
14.
J Leukoc Biol ; 103(1): 119-128, 2018 01.
Article in English | MEDLINE | ID: mdl-29345066

ABSTRACT

Compared to neutrophil chemoattractants, relatively little is known about the mechanism neutrophils use to respond to chemorepellents. We previously found that the soluble extracellular protein dipeptidyl peptidase IV (DPPIV) is a neutrophil chemorepellent. In this report, we show that an inhibitor of the protease activated receptor 2 (PAR2) blocks DPPIV-induced human neutrophil chemorepulsion, and that PAR2 agonists such as trypsin, tryptase, 2f-LIGRL, SLIGKV, and AC55541 induce human neutrophil chemorepulsion. Several PAR2 agonists in turn block the ability of the chemoattractant fMLP to attract neutrophils. Compared to neutrophils from male and female C57BL/6 mice, neutrophils from male and female mice lacking PAR2 are insensitive to the chemorepulsive effects of DPPIV or PAR2 agonists. Acute respiratory distress syndrome (ARDS) involves an insult-mediated influx of neutrophils into the lungs. In a mouse model of ARDS, aspiration of PAR2 agonists starting 24 h after an insult reduce neutrophil numbers in the bronchoalveolar lavage (BAL) fluid, as well as the post-BAL lung tissue. Together, these results indicate that the PAR2 receptor mediates DPPIV-induced chemorepulsion, and that PAR2 agonists might be useful to induce neutrophil chemorepulsion.


Subject(s)
Dipeptidyl Peptidase 4/pharmacology , Lung/immunology , Neutrophils/immunology , Receptor, PAR-2/physiology , Respiratory Distress Syndrome/immunology , Trypsin/pharmacology , Tryptases/pharmacology , Animals , Cells, Cultured , Chemotaxis, Leukocyte , Disease Models, Animal , Female , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/drug effects , Neutrophils/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism
15.
RSC Adv ; 8(9): 4773-4778, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-35539545

ABSTRACT

Four methodologies are reported for the regioselective synthesis of four series of regioisomer isoxazoles from cyclocondensation of ß-enamino diketones and hydroxylamine hydrochloride. Regiochemical control was achieved by varying reaction conditions and substrate structure. The mild reaction conditions used to access 4,5-disubstituted, 3,4-disubtituted, and 3,4,5-trisubstituted regioisomer isoxazoles, as well as the pharmacological and synthetic potential of the products, make these novel methodologies very powerful.

16.
J Org Chem ; 82(23): 12590-12602, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29094945

ABSTRACT

An alternative highly regioselective synthetic method for the preparation of 3,5-disubstituted 4-formyl-N-arylpyrazoles in a one-pot procedure is reported. The methodology developed was based on the regiochemical control of the cyclocondensation reaction of ß-enamino diketones with arylhydrazines. Structural modifications in the ß-enamino diketone system allied to the Lewis acid carbonyl activator BF3 were strategically employed for this control. Also a one-pot method for the preparation of 3,5-disubstituted 4-hydroxymethyl-N-arylpyrazole derivatives from the ß-enamino diketone and arylhydrazine substrates is described.

17.
Carbohydr Polym ; 170: 99-106, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28522008

ABSTRACT

[Hmim][HSO4] ionic liquid (IL) and bio-renewable sources as chitosan (CHT) and chondroitin sulfate (CS) were used to yield hydrogel-based materials (CHT/CS). The use of IL to solubilize both polysaccharides was considered an innovative way based on "green chemistry" principle, aiming the production of CHT/CS blended systems. CHT/CS hydrogels were carried out in homogeneous medium from short dissolution times. The hydrogels were characterized and achieved with excellent stabilities (in the 1.2-10pH range), larger swelling capacities, as well as devoid of cytotoxicity towards the normal VERO and diseased HT29 cells. The CHT/CS hydrogels carried out in [Hmim][HSO4] could be applied in many technological purposes, like medical, pharmaceutical, and environmental fields.


Subject(s)
Chitosan/chemistry , Chondroitin Sulfates/chemistry , Hydrogels/chemical synthesis , Ionic Liquids/chemistry , Cell Survival/drug effects , HT29 Cells , Humans , Hydrogels/toxicity
18.
Eur J Med Chem ; 124: 340-349, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27597410

ABSTRACT

A new series of pyrazolo[3,4-d]pyridazin-7-one derivatives were synthesised and evaluated for their in vitro antileishmanial activity against Leishmania amazonensis promastigote and axenic amastigote forms. The results showed that the pyrazolo[3,4-d]-pyridazin-7-one-N-acylhydrazone-(bi)thiophene hybrids 5b, 6b and 6d exhibit better antileishmanial activity with IC50 84.96, 3.63 and 10.79 µM, against the promastigote form and IC50 32.71, 2.32 and >100 µM against the axenic amastigote form, respectively. The active compounds had their cytotoxicity tested against macrophages and fibroblast cells with a higher selectivity index than 10 for compounds 6b and 6d. Molecular docking studies were performed for all active compounds using the enzyme trypanothione reductase (TR) to investigate a possible action mechanism. The results suggested that active compounds had interactions with the residues of amino acids Gly 13, Thr 51, Thr 160, Gly 161, Tyr 198, Arg 287, Asp 327, Thr 335, which may inhibit the enzyme TR.


Subject(s)
Drug Design , Leishmania mexicana/drug effects , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Animals , Chemistry Techniques, Synthetic , Inhibitory Concentration 50 , Leishmania mexicana/enzymology , Mice , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/metabolism , Parasitic Sensitivity Tests , Protein Conformation , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/metabolism
19.
Oncogenesis ; 5(5): e228, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27239960

ABSTRACT

In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition markedly suppressed tumor growth by H-Ras and H-Ras-tR, indicating that sustained PI3K signaling is a critical pathway for H-Ras-driven tumor progression, independent of microdomains.

20.
PLoS One ; 10(9): e0138748, 2015.
Article in English | MEDLINE | ID: mdl-26407067

ABSTRACT

For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is unknown. Here we report that thrombin, tryptase, and the protease trypsin bias human macrophage differentiation towards a pro-fibrotic M2a phenotype expressing high levels of galectin-3 from unpolarized monocytes, or from M1 and M2 macrophages, and that these effects appear to operate through protease-activated receptors. These results suggest that proteases can initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages.


Subject(s)
Cell Differentiation , Macrophages/cytology , Macrophages/metabolism , Phenotype , Thrombin/metabolism , Trypsin/metabolism , Tryptases/metabolism , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Carrier Proteins/metabolism , Cell Differentiation/drug effects , Coculture Techniques , Fibroblasts/metabolism , Galectin 3/metabolism , Glycoproteins/metabolism , Humans , Leukocytes, Mononuclear , Macrophages/drug effects , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Receptor, PAR-1/metabolism , Receptor, PAR-2/metabolism , Thrombin/pharmacology , Trypsin/pharmacology , Tryptases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...