Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Nature ; 629(8013): 945-950, 2024 May.
Article in English | MEDLINE | ID: mdl-38720069

ABSTRACT

Lipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a))1,2. Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (KIV) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. 3-7). Here we show that the first step of Lp(a) formation can be inhibited through small-molecule interactions with apo(a) KIV7-8. We identify compounds that bind to apo(a) KIV7-8, and, through chemical optimization and further application of multivalency, we create compounds with subnanomolar potency that inhibit the formation of Lp(a). Oral doses of prototype compounds and a potent, multivalent disruptor, LY3473329 (muvalaplin), reduced the levels of Lp(a) in transgenic mice and in cynomolgus monkeys. Although multivalent molecules bind to the Kringle domains of rat plasminogen and reduce plasmin activity, species-selective differences in plasminogen sequences suggest that inhibitor molecules will reduce the levels of Lp(a), but not those of plasminogen, in humans. These data support the clinical development of LY3473329-which is already in phase 2 studies-as a potent and specific orally administered agent for reducing the levels of Lp(a).


Subject(s)
Drug Discovery , Lipoprotein(a) , Macaca fascicularis , Animals , Female , Humans , Male , Mice , Administration, Oral , Kringles , Lipoprotein(a)/antagonists & inhibitors , Lipoprotein(a)/blood , Lipoprotein(a)/chemistry , Lipoprotein(a)/metabolism , Mice, Transgenic , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Plasminogen/chemistry , Plasminogen/metabolism , Species Specificity , Clinical Trials, Phase II as Topic , Apolipoproteins A/chemistry , Apolipoproteins A/metabolism
2.
Int J Drug Policy ; 123: 104250, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38088004

ABSTRACT

BACKGROUND: Opioid agonist therapies (OAT) and  harm reduction such as syringe service programs (SSP) have been shown to be effective in preventing adverse outcomes such as overdose deaths, HIV and Hepatitis C infections among people who inject drugs (PWID). The importance of social network influence on disease transmission is well established, yet the interplay between harm reduction and network structures is, generally, not well understood. This study aims to analyze how social networks can mediate the harm reduction effects associated with secondary exchange through syringe service programs (SSP) and opioid agonist therapies (OAT) among injection network members. METHODS: Sociometric data on networks on people who inject drugs from Hartford, CT, which were collected in 2012-2013, provided assessment of risk behaviors among 1574 injection network members, including participation in OAT and SSP. Subject's network characteristics were examined in relation to retention in OAT, as well as secondary syringe exchange using exponential random graph model (ERGM) and regression. RESULTS: Based on the analysis, we found that probability of individuals being retained in OAT was positively associated with the OAT retention status of their peers within the network. Using simulations, we found that higher levels of positive correlation of OAT retention among network members can result in reduced risk of transmission of HIV to network partners on OAT. In addition, we found that secondary syringe exchange engagement was associated with higher probability of sharing of paraphernalia and unsterile needles at the network level. CONCLUSIONS: Understanding how networks mediate risk behaviors is crucial for making progress toward ending the HIV epidemic.


Subject(s)
Drug Users , HIV Infections , Substance Abuse, Intravenous , Humans , Substance Abuse, Intravenous/epidemiology , Analgesics, Opioid/therapeutic use , HIV Infections/epidemiology , HIV Infections/prevention & control , HIV Infections/complications , Tomography, X-Ray Computed
3.
JAMA ; 330(21): 2075-2083, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37952254

ABSTRACT

Importance: Epidemiological and genetic data have implicated lipoprotein(a) as a potentially modifiable risk factor for atherosclerotic disease and aortic stenosis, but there are no approved pharmacological treatments. Objectives: To assess the safety, tolerability, pharmacokinetics, and effects of lepodisiran on lipoprotein(a) concentrations after single doses of the drug; lepodisiran is a short interfering RNA directed at hepatic synthesis of apolipoprotein(a), an essential component necessary for assembly of lipoprotein(a) particles. Design, Setting, and Participants: A single ascending-dose trial conducted at 5 clinical research sites in the US and Singapore that enrolled 48 adults without cardiovascular disease and with lipoprotein(a) serum concentrations of 75 nmol/L or greater (or ≥30 mg/dL) between November 18, 2020, and December 7, 2021; the last follow-up visit occurred on November 9, 2022. Interventions: Participants were randomized to receive placebo or a single dose of lepodisiran (4 mg, 12 mg, 32 mg, 96 mg, 304 mg, or 608 mg) administered subcutaneously. Main Outcomes and Measures: The primary outcome was the safety and tolerability of the single ascending doses of lepodisiran. The secondary outcomes included plasma levels of lepodisiran for 168 days after dose administration and changes in fasting lipoprotein(a) serum concentrations through a maximum follow-up of 336 days (48 weeks). Results: Of the 48 participants enrolled (mean age, 46.8 [SD, 11.6] years; 35% were women), 1 serious adverse event occurred. The plasma concentrations of lepodisiran reached peak levels within 10.5 hours and were undetectable by 48 hours. The median baseline lipoprotein(a) concentration was 111 nmol/L (IQR, 78 to 134 nmol/L) in the placebo group, 78 nmol/L (IQR, 50 to 152 nmol/L) in the 4 mg of lepodisiran group, 97 nmol/L (IQR, 86 to 107 nmol/L) in the 12-mg dose group, 120 nmol/L (IQR, 110 to 188 nmol/L) in the 32-mg dose group, 167 nmol/L (IQR, 124 to 189 nmol/L) in the 96-mg dose group, 96 nmol/L (IQR, 72 to 132 nmol/L) in the 304-mg dose group, and 130 nmol/L (IQR, 87 to 151 nmol/L) in the 608-mg dose group. The maximal median change in lipoprotein(a) concentration was -5% (IQR, -16% to 11%) in the placebo group, -41% (IQR, -47% to -20%) in the 4 mg of lepodisiran group, -59% (IQR, -66% to -53%) in the 12-mg dose group, -76% (IQR, -76% to -75%) in the 32-mg dose group, -90% (IQR, -94% to -85%) in the 96-mg dose group, -96% (IQR, -98% to -95%) in the 304-mg dose group, and -97% (IQR, -98% to -96%) in the 608-mg dose group. At day 337, the median change in lipoprotein(a) concentration was -94% (IQR, -94% to -85%) in the 608 mg of lepodisiran group. Conclusions and Relevance: In this phase 1 study of 48 participants with elevated lipoprotein(a) levels, lepodisiran was well tolerated and produced dose-dependent, long-duration reductions in serum lipoprotein(a) concentrations. The findings support further study of lepodisiran. Trial Registration: ClinicalTrials.gov Identifier: NCT04914546.


Subject(s)
Apolipoproteins A , Lipoprotein(a) , RNA, Small Interfering , Adult , Female , Humans , Male , Middle Aged , Double-Blind Method , Lipoprotein(a)/antagonists & inhibitors , Lipoprotein(a)/blood , Risk Factors , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/adverse effects , RNA, Small Interfering/therapeutic use , Singapore , Apolipoproteins A/biosynthesis , Liver/metabolism , Administration, Cutaneous , United States
4.
JAMA ; 330(11): 1042-1053, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37638695

ABSTRACT

Importance: Lipoprotein(a) (Lp[a]) is associated with atherosclerotic disease and aortic stenosis. Lp(a) forms by bonding between apolipoprotein(a) (apo[a]) and apo B100. Muvalaplin is an orally administered small molecule that inhibits Lp(a) formation by blocking the apo(a)-apo B100 interaction while avoiding interaction with a homologous protein, plasminogen. Objective: To determine the safety, tolerability, pharmacokinetics, and pharmacodynamic effects of muvalaplin. Design, Setting, and Participants: This phase 1 randomized, double-blind, parallel-design study enrolled 114 participants (55 assigned to a single-ascending dose; 59 assigned to a multiple-ascending dose group) at 1 site in the Netherlands. Interventions: The single ascending dose treatment evaluated the effect of a single dose of muvalaplin ranging from 1 mg to 800 mg or placebo taken by healthy participants with any Lp(a) level. The multiple ascending dose treatment evaluated the effect of taking daily doses of muvalaplin (30 mg to 800 mg) or placebo for 14 days in patients with Lp(a) levels of 30 mg/dL or higher. Main Outcomes and Measures: Outcomes included safety, tolerability, pharmacokinetics, and exploratory pharmacodynamic biomarkers. Results: Among 114 randomized (55 in the single ascending dose group: mean [SD] age, 29 [10] years, 35 females [64%], 2 American Indian or Alaska Native [4%], 50 White [91%], 3 multiracial [5%]; 59 in the multiple ascending dose group: mean [SD] age 32 [15] years; 34 females [58%]; 3 American Indian or Alaska Native [5%], 6 Black [10%], 47 White [80%], 3 multiracial [5%]), 105 completed the trial. Muvalaplin was not associated with tolerability concerns or clinically significant adverse effects. Oral doses of 30 mg to 800 mg for 14 days resulted in increasing muvalaplin plasma concentrations and half-life ranging from 70 to 414 hours. Muvalaplin lowered Lp(a) plasma levels within 24 hours after the first dose, with further Lp(a) reduction on repeated dosing. Maximum placebo-adjusted Lp(a) reduction was 63% to 65%, resulting in Lp(a) plasma levels less than 50 mg/dL in 93% of participants, with similar effects at daily doses of 100 mg or more. No clinically significant changes in plasminogen levels or activity were observed. Conclusion: Muvalaplin, a selective small molecule inhibitor of Lp(a) formation, was not associated with tolerability concerns and lowered Lp(a) levels up to 65% following daily administration for 14 days. Longer and larger trials will be required to further evaluate safety, tolerability, and effect of muvalaplin on Lp(a) levels and cardiovascular outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT04472676.


Subject(s)
Cardiovascular Agents , Hypolipidemic Agents , Lipoprotein(a) , Adult , Female , Humans , American Indian or Alaska Native , Apoprotein(a)/antagonists & inhibitors , Lipoprotein(a)/antagonists & inhibitors , Administration, Oral , Cardiovascular Agents/administration & dosage , Cardiovascular Agents/adverse effects , Cardiovascular Agents/therapeutic use , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/adverse effects , Hypolipidemic Agents/therapeutic use , Double-Blind Method , Male , Adolescent , Young Adult , Middle Aged , Dose-Response Relationship, Drug , White , Black or African American , Racial Groups
5.
Front Cardiovasc Med ; 9: 889985, 2022.
Article in English | MEDLINE | ID: mdl-35734277

ABSTRACT

Introduction: Cardiovascular disease (CVD) is the leading cause of mortality worldwide and is the leading cause of death in the US. Lipid dysregulation is a well-known precursor to metabolic diseases, including CVD. There is a growing body of literature that suggests MRI-derived epicardial fat volume, or epicardial adipose tissue (EAT) volume, is linked to the development of coronary artery disease. Interestingly, epicardial fat is also actively involved in lipid and energy homeostasis, with epicardial adipose tissue having a greater capacity for release and uptake of free fatty acids. However, there is a scarcity of knowledge on the influence of plasma lipids on EAT volume. Aim: The focus of this study is on the identification of novel lipidomic species associated with CMRI-derived measures of epicardial fat in Mexican American individuals. Methods: We performed lipidomic profiling on 200 Mexican American individuals. High-throughput mass spectrometry enabled rapid capture of precise lipidomic profiles, providing measures of 799 unique species from circulating plasma samples. Because of our extended pedigree design, we utilized a standard quantitative genetic linear mixed model analysis to determine whether lipids were correlated with EAT by formally testing for association between each lipid species and the CMRI epicardial fat phenotype. Results: After correction for multiple testing using the FDR approach, we identified 135 lipid species showing significant association with epicardial fat. Of those, 131 lipid species were positively correlated with EAT, where increased circulating lipid levels were correlated with increased epicardial fat. Interestingly, the top 10 lipid species associated with an increased epicardial fat volume were from the deoxyceramide (Cer(m)) and triacylglycerol (TG) families. Deoxyceramides are atypical and neurotoxic sphingolipids. Triacylglycerols are an abundant lipid class and comprise the bulk of storage fat in tissues. Pathologically elevated TG and Cer(m) levels are related to CVD risk and, in our study, to EAT volume. Conclusion: Our results indicate that specific lipid abnormalities such as enriched saturated triacylglycerols and the presence of toxic ceramides Cer(m) in plasma of our individuals could precede CVD with increased EAT volume.

6.
Circ Genom Precis Med ; 14(3): e003232, 2021 06.
Article in English | MEDLINE | ID: mdl-33887960

ABSTRACT

BACKGROUND: The identification and understanding of therapeutic targets for atherosclerotic cardiovascular disease is of fundamental importance given its global health and economic burden. Inhibition of ANGPTL3 (angiopoietin-like 3) has demonstrated a cardioprotective effect, showing promise for atherosclerotic cardiovascular disease treatment, and is currently the focus of ongoing clinical trials. Here, we assessed the genetic basis of variation in ANGPTL3 levels in the San Antonio Family Heart Study. METHODS: We assayed ANGPTL3 protein levels in ≈1000 Mexican Americans from extended pedigrees. By drawing upon existing plasma lipidome profiles and genomic data we conducted analyses to understand the genetic basis to variation in ANGPTL3 protein levels, and accordingly the correlation with the plasma lipidome. RESULTS: In a variance components framework, we identified that variation in ANGPTL3 was significantly heritable (h2=0.33, P=1.31×10-16). To explore the genetic basis of this heritability, we conducted a genome-wide linkage scan and identified significant linkage (logarithm of odds =6.18) to a locus on chromosome 1 at 90 centimorgans, corresponding to the ANGPTL3 gene location. In the genomes of 23 individuals from a single pedigree, we identified a loss-of-function variant, rs398122988 (N121Kfs*2), in ANGPTL3, that was significantly associated with lower ANGPTL3 levels (ß=-1.69 SD units, P=3.367×10-13), and accounted for the linkage signal at this locus. Given the known role of ANGPTL3 as an inhibitor of endothelial and lipoprotein lipase, we explored the association of ANGPTL3 protein levels and rs398122988 with the plasma lipidome and related phenotypes, identifying novel associations with phosphatidylinositols. CONCLUSIONS: Variation in ANGPTL3 protein levels is heritable and under significant genetic control. Both ANGPTL3 levels and loss-of-function variants in ANGPTL3 have significant associations with the plasma lipidome. These findings further our understanding of ANGPTL3 as a therapeutic target for atherosclerotic cardiovascular disease.


Subject(s)
Angiopoietin-Like Protein 3 , Atherosclerosis , Loss of Function Mutation , Mexican Americans , Phosphatidylinositols , Adult , Angiopoietin-Like Protein 3/blood , Angiopoietin-Like Protein 3/genetics , Atherosclerosis/blood , Atherosclerosis/genetics , Female , Humans , Lipidomics , Male , Middle Aged , Phosphatidylinositols/blood , Phosphatidylinositols/genetics
7.
ACS Chem Biol ; 16(3): 457-462, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33656326

ABSTRACT

Lipoprotein lipase (LPL) is the key enzyme that hydrolyzes triglycerides from triglyceride-rich lipoproteins. Angiopoietin-like proteins (ANGPTL) 3, 4, and 8 are well-characterized protein inhibitors of LPL. ANGPTL8 forms a complex with ANGPTL3, and the complex is a potent endogenous inhibitor of LPL. However, the nature of the structural interaction between ANGPTL3/8 and LPL is unknown. To probe the conformational changes in LPL induced by ANGPTL3/8, we found that HDX-MS detected significantly altered deuteration in the lid region, ApoC2 binding site, and furin cleavage region of LPL in the presence of ANGPTL3/8. Supporting this HDX structural evidence, we found that ANGPTL3/8 inhibits LPL enzymatic activities and increases LPL cleavage. ANGPTL3/8-induced effects on LPL activity and LPL cleavage are much stronger than those of ANGPTL3 or ANGPTL8 alone. ANGPTL3/8-mediated LPL cleavage is blocked by both an ANGPTL3 antibody and a furin inhibitor. Knock-down of furin expression by siRNA significantly reduced ANGPT3/8-induced cleavage of LPL. Our data suggest ANGPTL3/8 promotes furin-mediated LPL cleavage.


Subject(s)
Angiopoietin-like Proteins/chemistry , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/chemistry , Proteolysis/drug effects , Binding Sites , Deuterium/chemistry , Furin/chemistry , Furin/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Hydrolysis , Isotope Labeling , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Conformation , RNA, Small Interfering/metabolism
8.
J Lipid Res ; 60(9): 1630-1639, 2019 09.
Article in English | MEDLINE | ID: mdl-31227640

ABSTRACT

The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.


Subject(s)
Ceramides/biosynthesis , Fatty Acid Desaturases/genetics , Blotting, Western , CRISPR-Cas Systems/genetics , Ceramides/metabolism , Female , Genotype , Hep G2 Cells , Humans , Male , Mexican Americans
9.
Neuropsychopharmacology ; 43(13): 2556-2563, 2018 12.
Article in English | MEDLINE | ID: mdl-30082891

ABSTRACT

Suicide is major public health concern; one million individuals worldwide die by suicide each year of which there are many more attempts. Thus, it is imperative that robust and reliable indicators, or biomarkers, of suicide risk be identified so that individuals at risk can be identified and provided appropriate interventions as quickly as possible. Previous work has revealed a relationship between low levels of circulating cholesterol and suicide risk, implicating cholesterol level as one such potential biomarker, but the factors underlying this relationship remain unknown. In the present study, we applied a combination of bivariate polygenic and coefficient-of-relatedness analysis, followed by mediation analysis, in a large sample of Mexican-American individuals from extended pedigrees [N = 1897; 96 pedigrees (average size = 19.17 individuals, range = 2-189) 60% female; mean age = 42.58 years, range = 18-97 years, sd = 15.75 years] with no exclusion criteria for any given psychiatric disorder. We observed that total esterified cholesterol measured at the time of psychiatric assessment shared a significant genetic overlap with risk for suicide attempt (ρg = -0.64, p = 1.24 × 10-04). We also found that total unesterified cholesterol measured around 20 years prior to assessment varied as a function of genetic proximity to an affected individual (h2 = 0.21, se = 0.10, p = 8.73 × 10-04; ßsuicide = -0.70, se = 0.25, p = 8.90 × 10-03). Finally, we found that the relationship between total unesterified cholesterol and suicide risk was significantly mediated by ABCA-1-specific cholesterol efflux capacity (ßsuicide-efflux = -0.45, p = 0.039; ßefflux-cholexterol = -0.34, p < 0.0001; ßindirect = -0.15, p = 0.044). These findings suggest that the relatively well-delineated process of cholesterol metabolism and associated molecular pathways will be informative for understanding the neurobiological underpinnings of risk for suicide attempt.


Subject(s)
Cholesterol/blood , Cholesterol/genetics , Genetic Predisposition to Disease/genetics , Genetic Predisposition to Disease/psychology , Suicidal Ideation , Suicide, Attempted/psychology , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Disease Susceptibility/blood , Disease Susceptibility/psychology , Female , Humans , Male , Mental Disorders/blood , Mental Disorders/diagnosis , Mental Disorders/psychology , Middle Aged , Pedigree , Risk Factors , Young Adult
10.
11.
J Med Chem ; 58(24): 9768-72, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26568144

ABSTRACT

The farnesoid X receptor (FXR) is a member of the "metabolic" subfamily of nuclear receptors. Several FXR agonists have been reported in the literature to have profound effects on plasma lipids in animal models. To discover novel and effective therapies for dyslipidemia and atherosclerosis, we have developed a series of potent FXR agonists that robustly lower plasma LDL and vLDL in LDLr-/- mice. To this end the novel piperidinylisoxazole system LY2562175 was discovered. This molecule is a potent and selective FXR agonist in vitro and has robust lipid modulating properties, lowering LDL and triglycerides while raising HDL in preclinical species. The preclinical ADME properties of LY2562175 were consistent with enabling once daily dosing in humans, and it was ultimately advanced to the clinic for evaluation in humans. The synthesis and biological profile of this molecule is discussed.


Subject(s)
Dyslipidemias/drug therapy , Hypolipidemic Agents/chemistry , Indoles/chemistry , Isoxazoles/chemistry , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Cholesterol/blood , Dogs , Double-Blind Method , Female , HEK293 Cells , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Isoxazoles/pharmacokinetics , Isoxazoles/pharmacology , Macaca fascicularis , Male , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Receptors, LDL/genetics , Structure-Activity Relationship , Triglycerides/blood
12.
PLoS One ; 9(4): e93297, 2014.
Article in English | MEDLINE | ID: mdl-24695114

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice. METHODOLOGY/PRINCIPAL FINDINGS: Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis. CONCLUSIONS/SIGNIFICANCE: Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.


Subject(s)
Acute Kidney Injury/metabolism , Ischemia/metabolism , Kidney/metabolism , MicroRNAs/metabolism , Plasma/metabolism , Reperfusion Injury/metabolism , Animals , Biomarkers/metabolism , Creatinine/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Reperfusion/methods
13.
PLoS One ; 9(1): e86522, 2014.
Article in English | MEDLINE | ID: mdl-24475136

ABSTRACT

BACKGROUND: Leukotriene B4 (LTB4) has been associated with the initiation and progression of atherosclerosis and abdominal aortic aneurysm (AAA) formation. However, associations of LTB4 levels with tissue characteristics and adverse clinical outcome of advanced atherosclerosis and AAA are scarcely studied. We hypothesized that LTB4 levels are associated with a vulnerable plaque phenotype and adverse clinical outcome. Furthermore, that LTB4 levels are associated with inflammatory AAA and adverse clinical outcome. METHODS: Atherosclerotic plaques and AAA specimens were selected from two independent databases for LTB4 measurements. Plaques were isolated during carotid endarterectomy from asymptomatic (n = 58) or symptomatic (n = 317) patients, classified prior to surgery. LTB4 levels were measured without prior lipid extraction and levels were corrected for protein content. LTB4 levels were related to plaque phenotype, baseline patient characteristics and clinical outcome within three years following surgery. Seven non-diseased mammary artery specimens served as controls. AAA specimens were isolated during open repair, classified as elective (n = 189), symptomatic (n = 29) or ruptured (n = 23). LTB4 levels were measured similar to the plaque measurements and were related to tissue characteristics, baseline patient characteristics and clinical outcome. Twenty-six non-diseased aortic specimens served as controls. RESULTS: LTB4 levels corrected for protein content were not significantly associated with histological characteristics specific for vulnerable plaques or inflammatory AAA as well as clinical presentation. Moreover, it could not predict secondary manifestations independently investigated in both databases. However, LTB4 levels were significantly lower in controls compared to plaque (p = 0.025) or AAA (p = 0.017). CONCLUSIONS: LTB4 levels were not associated with a vulnerable plaque phenotype or inflammatory AAA or clinical presentation. This study does not provide supportive evidence for a role of LTB4 in atherosclerotic plaque destabilization or AAA expansion. However, these data should be interpreted with care, since LTB4 measurements were performed without prior lipid extractions.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Leukotriene B4/metabolism , Plaque, Atherosclerotic/metabolism , Analysis of Variance , Case-Control Studies , Humans , Immunohistochemistry , Leukotriene B4/blood
14.
Bioorg Med Chem Lett ; 23(19): 5410-4, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23953189

ABSTRACT

The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.


Subject(s)
Central Nervous System/drug effects , Receptors, Ghrelin/antagonists & inhibitors , Amino Acid Sequence , Animals , Binding Sites , Drug Inverse Agonism , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Indans/chemistry , Indans/pharmacology , Inhibitory Concentration 50 , Isomerism , Molecular Structure , Protein Binding/drug effects , Rats , Structure-Activity Relationship
15.
J Biol Chem ; 288(9): 6386-96, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23322769

ABSTRACT

Control of plasma cholesterol levels is a major therapeutic strategy for management of coronary artery disease (CAD). Although reducing LDL cholesterol (LDL-c) levels decreases morbidity and mortality, this therapeutic intervention only translates into a 25-40% reduction in cardiovascular events. Epidemiological studies have shown that a high LDL-c level is not the only risk factor for CAD; low HDL cholesterol (HDL-c) is an independent risk factor for CAD. Apolipoprotein A-I (ApoA-I) is the major protein component of HDL-c that mediates reverse cholesterol transport from tissues to the liver for excretion. Therefore, increasing ApoA-I levels is an attractive strategy for HDL-c elevation. Using genome-wide siRNA screening, targets that regulate hepatocyte ApoA-I secretion were identified through transfection of 21,789 siRNAs into hepatocytes whereby cell supernatants were assayed for ApoA-I. Approximately 800 genes were identified and triaged using a convergence of information, including genetic associations with HDL-c levels, tissue-specific gene expression, druggability assessments, and pathway analysis. Fifty-nine genes were selected for reconfirmation; 40 genes were confirmed. Here we describe the siRNA screening strategy, assay implementation and validation, data triaging, and example genes of interest. The genes of interest include known and novel genes encoding secreted enzymes, proteases, G-protein-coupled receptors, metabolic enzymes, ion transporters, and proteins of unknown function. Repression of farnesyltransferase (FNTA) by siRNA and the enzyme inhibitor manumycin A caused elevation of ApoA-I secretion from hepatocytes and from transgenic mice expressing hApoA-I and cholesterol ester transfer protein transgenes. In total, this work underscores the power of functional genetic assessment to identify new therapeutic targets.


Subject(s)
Apolipoprotein A-I/metabolism , Hepatocytes/metabolism , Liver/metabolism , Animals , Apolipoprotein A-I/genetics , Cholesterol, HDL/genetics , Cholesterol, HDL/metabolism , Enzyme Inhibitors/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Genome-Wide Association Study , Hep G2 Cells , Humans , Liver/cytology , Mice , Mice, Transgenic , Polyenes/pharmacology , Polyunsaturated Alkamides/pharmacology , RNA, Small Interfering/genetics
16.
Curr Pharm Biotechnol ; 12(9): 1463-80, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21401518

ABSTRACT

Hemostatic balance is regulated by many factors that may become perturbed by cardio-metabolic abnormalities. Indeed, patients with multiple components of the metabolic syndrome have increased risk of atherosclerosis, hemostatic disorders and thrombotic events. This review focuses on the interrelationship between the metabolic syndrome components and thrombotic and thromboembolic events, the potential underlying mechanisms that lead to metabolic and hemostatic disorders in metabolic syndrome patients, the existing therapeutics aimed at reducing major cardiovascular events, and new therapeutic approaches to address pro-coagulant states.


Subject(s)
Metabolic Syndrome/blood , Animals , Hemostasis , Humans , Metabolic Syndrome/epidemiology , Metabolic Syndrome/therapy , Thrombosis/physiopathology
17.
Pharmacol Biochem Behav ; 96(4): 476-87, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20637794

ABSTRACT

Binge alcohol consumption is a rising concern in the United States, especially among adolescents. During this developmental period alcohol use is usually initiated and has been shown to cause detrimental effects on brain structure and function as well as cognitive/behavioral impairments in rats. Binge models, where animals are repeatedly administered high doses of ethanol typically over a period of three or four days cause these effects. There has been little work conducted aimed at investigating the long-term behavioral consequences of repeated binge administration during adolescence on later ethanol-induced behavior in young adulthood and adulthood. The repeated four-day binge model may serve as a good approximate for patterns of human adolescent alcohol consumption as this is similar to a "bender" in human alcoholics. The present set of experiments examined the dose-response and sex-related differences induced by repeated binge ethanol administration during adolescence on sweetened ethanol (Experiment 1) or saccharin (Experiment 2) intake in young adulthood. In both experiments, on postnatal days (PND) 28-31, PND 35-38 and PND 42-45, ethanol (1.5, 3.0 or 5.0 g/kg) or water was administered intragastrically to adolescent rats. Rats underwent abstinence from PND 46-59. Subsequently, in young adulthood, ethanol and saccharin intake were assessed. Exposure to any dose of ethanol during adolescence significantly enhanced ethanol intake in adulthood. However, while female rats had higher overall g/kg intake, males appear to be more vulnerable to the impact of adolescent ethanol exposure on subsequently increased ethanol intake in young adulthood. Exposure to ethanol during adolescence did not alter saccharin consumption in young adulthood in male or female rats. Considering that adolescence is the developmental period in which ethanol experimentation and consumption is usually initiated, the present set of experiments demonstrate the importance of elucidating the impact of early binge-pattern ethanol exposure on the subsequent predisposition to drink later in life.


Subject(s)
Age Factors , Ethanol/administration & dosage , Saccharin/administration & dosage , Sweetening Agents/administration & dosage , Animals , Female , Male , Rats , Rats, Sprague-Dawley , Weight Gain
18.
Pediatrics ; 118 Suppl 2: S134-40, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17079615

ABSTRACT

OBJECTIVE: Five NICUs that participate in the Vermont Oxford Network's Neonatal Intensive Care Quality Improvement Collaborative 2002 attempted to identify potentially better practices that would have a directly impact on nurse recruitment and retention. The group identified nurse recruitment and retention as an important initiative for many hospitals that face a nursing shortage. METHODS: The group analyzed information from hospital demographics, literature reviews, process analysis questionnaires, and site visits. RESULTS: The literature review, process analysis questionnaire, and benchmarking with magnet hospitals identified 5 drivers for retention and recruitment. The drivers evolved into 5 potentially better practices that cover orientation, recognition and rewards, work environment, nurse/physician collaboration, and nursing autonomy. The magnet hospitals, which are known to have the highest retention rate and the lowest turnover rate, have many of these potentially better practices in place. CONCLUSION: The 5 practices described herein have the potential to decrease nursing turnover in NICUs.


Subject(s)
Intensive Care Units, Neonatal/organization & administration , Personnel Staffing and Scheduling , Focus Groups , Humans , Inservice Training/methods , Neonatal Nursing , Nurse-Patient Relations , Personnel Turnover/statistics & numerical data , Professional Autonomy , Program Development , Program Evaluation , Quality Assurance, Health Care , United States , Workplace
19.
Pediatrics ; 118 Suppl 2: S141-6, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17079616

ABSTRACT

OBJECTIVE: Five NICUs that participate in the Vermont Oxford Network Quality Improvement Collaborative have implemented several potentially better practices in an attempt to decrease nurse turnover by 50%. These potentially better practices focus on orientation, rewards and recognition, healthy work environment, nurse-physician collaboration, and nursing autonomy. METHODS: Each unit implemented some or all of the potentially better practices. An Excel spreadsheet tool for tracking turnover rates was developed and used to measure the impact of the potentially better practices on retention. Rates were measured quarterly. RESULTS: After implementation of the potentially better practices, turnover rates fell at all of the NICUs ranging from 13% to 64%. CONCLUSIONS: Nurse retention is multifactorial. Implementation of the potentially better practices had a positive influence on nurse satisfaction but a varied impact on nurse retention. The impact of larger issues such as pay and staffing levels is significant and may not be influenced at the unit level.


Subject(s)
Intensive Care Units, Neonatal/organization & administration , Personnel Staffing and Scheduling , Focus Groups , Humans , Inservice Training/methods , Job Satisfaction , Neonatal Nursing , Personnel Turnover , Physician-Nurse Relations , Professional Autonomy , Quality Assurance, Health Care , Reward , United States , Workplace
20.
J Biol Chem ; 281(52): 39831-8, 2006 Dec 29.
Article in English | MEDLINE | ID: mdl-17065154

ABSTRACT

The farnesoid X receptor (FXR, NR1H4) is a bile acid-responsive nuclear receptor that plays critical roles in the transcriptional regulation genes involved in cholesterol, bile acid, triglyceride, and carbohydrate metabolism. By microarray analysis of hepatic genes from female Zucker diabetic fatty (ZDF) rats treated with the FXR agonist GW4064, we have identified dimethylarginine dimethylaminohydrolase-1 (DDAH1) as an FXR target gene. DDAH1 is a key catabolic enzyme of asymmetric dimethylarginine (ADMA), a major endogenous nitric-oxide synthase inhibitor. Sequence analysis of the DDAH1 gene reveals the presence of an FXR response element (FXRE) located 90 kb downstream of the transcription initiation site and within the first intron. Functional analysis of the putative FXRE demonstrated GW4064 dose-dependent transcriptional activation from the element, and we have demonstrated that the FXRE sequence binds the FXR-RXR heterodimer. In vivo administration of GW4064 to female ZDF rats promoted a dose-dependent and >6-fold increase in hepatic DDAH1 gene expression. The level of serum ADMA was reduced concomitantly. These findings provide a mechanism by which FXR may increase endothelium-derived nitric oxide levels through modulation of serum ADMA levels via direct regulation of hepatic DDAH1 gene expression. Thus, beneficial clinical outcomes of FXR agonist therapy may include prevention of atherosclerosis and improvement of the metabolic syndrome.


Subject(s)
Amidohydrolases/genetics , Arginine/analogs & derivatives , DNA-Binding Proteins/agonists , Gene Expression Regulation/drug effects , Isoxazoles/pharmacology , Liver/enzymology , Receptors, Cytoplasmic and Nuclear/agonists , Transcription Factors/agonists , Amidohydrolases/biosynthesis , Amidohydrolases/physiology , Animals , Arginine/antagonists & inhibitors , Arginine/blood , Cell Line , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Dose-Response Relationship, Drug , Female , Humans , Isoxazoles/administration & dosage , Liver/drug effects , Rats , Rats, Zucker , Receptors, Cytoplasmic and Nuclear/deficiency , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/physiology , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...