Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.417
Filter
1.
Front Immunol ; 15: 1383136, 2024.
Article in English | MEDLINE | ID: mdl-38979422

ABSTRACT

Multiple myeloma (MM) is a plasma cell disease with a preferential bone marrow (BM) tropism. Enforced expression of tissue-specific chemokine receptors has been shown to successfully guide adoptively-transferred CAR NK cells towards the malignant milieu in solid cancers, but also to BM-resident AML and MM. For redirection towards BM-associated chemokine CXCL12, we armored BCMA CAR-NK-92 as well as primary NK cells with ectopic expression of either wildtype CXCR4 or a gain-of-function mutant CXCR4R334X. Our data showed that BCMA CAR-NK-92 and -primary NK cells equipped with CXCR4 gained an improved ability to migrate towards CXCL12 in vitro. Beyond its classical role coordinating chemotaxis, CXCR4 has been shown to participate in T cell co-stimulation, which prompted us to examine the functionality of CXCR4-cotransduced BCMA-CAR NK cells. Ectopic CXCR4 expression enhanced the cytotoxic capacity of BCMA CAR-NK cells, as evidenced by the ability to eliminate BCMA-expressing target cell lines and primary MM cells in vitro and through accelerated cytolytic granule release. We show that CXCR4 co-modification prolonged BCMA CAR surface deposition, augmented ZAP-70 recruitment following CAR-engagement, and accelerated distal signal transduction kinetics. BCMA CAR sensitivity towards antigen was enhanced by virtue of an enhanced ZAP-70 recruitment to the immunological synapse, revealing an increased propensity of CARs to become triggered upon CXCR4 overexpression. Unexpectedly, co-stimulation via CXCR4 occurred in the absence of CXCL12 ligand-stimulation. Collectively, our findings imply that co-modification of CAR-NK cells with tissue-relevant chemokine receptors affect adoptive NK cell therapy beyond improved trafficking and retention within tumor sites.


Subject(s)
B-Cell Maturation Antigen , Chemokine CXCL12 , Immunotherapy, Adoptive , Killer Cells, Natural , Multiple Myeloma , Receptors, CXCR4 , Receptors, Chimeric Antigen , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/metabolism , B-Cell Maturation Antigen/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Chemokine CXCL12/metabolism , Cell Line, Tumor , Cytotoxicity, Immunologic
2.
Neuromodulation ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958630

ABSTRACT

OBJECTIVES: Pharmacologic pain treatments lack specific targeting and often produce unwanted side effects (eg, addiction, additional hyperalgesia). We previously established that the direct application of laser irradiation (direct photobiomodulation [PBM]) of the sural nerve reduces thermal hypersensitivity in a rodent model of chronic pain, but not mechanical hypersensitivity. These observations were consistent with a selective reduction in the small-diameter fiber contribution to electrophysiologically measured evoked response after direct PBM of a sensory nerve (saphenous). However, to our knowledge, direct application of laser irradiation has never been performed in an animal model of acute nociceptive pain or on a mixed nerve in which sensory and motor outcomes can be observed. MATERIALS AND METHODS: In this study, we describe the effects of direct application of laser irradiation (808 nm, 60 mW, 4 minutes) on a mixed nerve (sciatic nerve) in an acute nociceptive pain model (intradermal capsaicin injection) in rats over the course of two weeks. To investigate whether laser irradiation of a mixed nerve alters motor function, in separate experiments, we applied laser irradiation to the sciatic nerve (using the same parameters as in the chronic pain experiments), and force generation of the gastrocnemius was measured. RESULTS: Capsaicin-induced hypersensitivities to mechanical (pin prick) and thermal (Hargreaves) noxious stimuli, associated with Aδ- and C-fibers, showed a maximal reduction of 70% and 56.2%, respectively, by direct PBM, when compared with a control group (vehicle injection, no PBM) on the same day. This reduction was determined to be significant using a mixed-design analysis of variance with a p value < 0.05. Force generation remained unchanged for up to 120 minutes after laser irradiation. In summary, direct PBM selectively inhibits C- and Aδ-fiber transmission while leaving Aɑ-, Aß-, and motor-fiber activity intact. CONCLUSIONS: These results, in conjunction with our previous analyses of laser irradiation effects on the sural nerve in a chronic spared nerve injury pain model, suggest that direct PBM is a promising candidate for treating pain induced by small-diameter fiber activity.

3.
World J Gastrointest Endosc ; 16(6): 335-342, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38946853

ABSTRACT

BACKGROUND: Improved adenoma detection rate (ADR) has been demonstrated with artificial intelligence (AI)-assisted colonoscopy. However, data on the real-world application of AI and its effect on colorectal cancer (CRC) screening outcomes is limited. AIM: To analyze the long-term impact of AI on a diverse at-risk patient population undergoing diagnostic colonoscopy for positive CRC screening tests or symptoms. METHODS: AI software (GI Genius, Medtronic) was implemented into the standard procedure protocol in November 2022. Data was collected on patient demographics, procedure indication, polyp size, location, and pathology. CRC screening outcomes were evaluated before and at different intervals after AI introduction with one year of follow-up. RESULTS: We evaluated 1008 colonoscopies (278 pre-AI, 255 early post-AI, 285 established post-AI, and 190 late post-AI). The ADR was 38.1% pre-AI, 42.0% early post-AI (P = 0.77), 40.0% established post-AI (P = 0.44), and 39.5% late post-AI (P = 0.77). There were no significant differences in polyp detection rate (PDR, baseline 59.7%), advanced ADR (baseline 16.2%), and non-neoplastic PDR (baseline 30.0%) before and after AI introduction. CONCLUSION: In patients with an increased pre-test probability of having an abnormal colonoscopy, the current generation of AI did not yield enhanced CRC screening metrics over high-quality colonoscopy. Although the potential of AI in colonoscopy is undisputed, current AI technology may not universally elevate screening metrics across all situations and patient populations. Future studies that analyze different AI systems across various patient populations are needed to determine the most effective role of AI in optimizing CRC screening in clinical practice.

4.
Int J Surg Oncol ; 2024: 5339292, 2024.
Article in English | MEDLINE | ID: mdl-38966634

ABSTRACT

Objective: Determine the histopathologic features that correlate with head and neck cancer (HNC) cachexia. Methods: A single-institution, retrospective study was performed on adults with HPV-negative, mucosal squamous cell carcinoma of the aerodigestive tract undergoing resection and free flap reconstruction from 2014 to 2019. Patients with distant metastases were excluded. Demographics, comorbidities, preoperative nutrition, and surgical pathology reports were collected. Comparisons of histopathologic features and cachexia severity were made. Results: The study included 222 predominantly male (64.9%) patients aged 61.3 ± 11.8 years. Cachexia was identified in 57.2% patients, and 18.5% were severe (≥15% weight loss). No differences in demographics were identified between the groups. Compared to control, patients with severe cachexia had lower serum hemoglobin (p=0.048) and albumin (p < 0.001), larger tumor diameter (p < 0.001), greater depth of invasion (p < 0.001), and elevated proportions of pT4 disease (p < 0.001), pN2-N3 disease (p=0.001), lymphovascular invasion (p=0.009), and extranodal extension (p=0.014). Multivariate logistic regression identified tumor size (OR [95% CI] = 1.36 [1.08-1.73]), oral cavity tumor (OR [95% CI] = 0.30 [0.11-0.84]), and nodal burden (OR [95% CI] = 1.16 [0.98-1.38]) as significant histopathologic contributors of cancer cachexia. Conclusions: Larger, more invasive tumors with nodal metastases and aggressive histologic features are associated with greater cachexia severity in mucosal HNC.


Subject(s)
Cachexia , Head and Neck Neoplasms , Humans , Cachexia/pathology , Cachexia/etiology , Male , Middle Aged , Female , Retrospective Studies , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/complications , Aged , Squamous Cell Carcinoma of Head and Neck/surgery , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/complications , Prognosis , Neoplasm Invasiveness , Free Tissue Flaps
5.
PLoS Genet ; 20(7): e1011036, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968323

ABSTRACT

Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.

6.
Acta Neuropathol Commun ; 12(1): 111, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956662

ABSTRACT

The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of SNCA. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.


Subject(s)
Gene Regulatory Networks , Neurons , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Neurons/metabolism , Neurons/pathology , Male , Female , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Aged , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , Genome-Wide Association Study , Transcriptome , Single-Cell Analysis , Temporal Lobe/metabolism , Temporal Lobe/pathology , Middle Aged , Gene Expression Regulation/genetics , Multiomics
8.
Subcell Biochem ; 104: 383-408, 2024.
Article in English | MEDLINE | ID: mdl-38963493

ABSTRACT

Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.


Subject(s)
Flavins , Electron Transport , Flavins/metabolism , Flavins/chemistry , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Protein Conformation , Models, Molecular , Oxidation-Reduction
9.
Medicine (Baltimore) ; 103(27): e38794, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968484

ABSTRACT

BACKGROUND: Extracranial metastases occur in <2% of cases of glioblastoma (GBM). When metastases do occur, bone is the most common destination. Herein, we review clinical characteristics of GBM patients with osseous metastases and evaluate both potential risk factors and prognostic significance. METHODS: Using an institutional database, we identified and retrospectively analyzed 6 patients with both GBM and osseous metastases. We collected data on patient demographics, tumor genetics, clinical courses, and outcomes. Given the rarity of metastatic GBM, we conducted historical comparisons using previously published literature. RESULTS: Five patients with osseous metastases (83%) were male, with a median age of 46 years at GBM diagnosis (range: 20-84). All patients had IDH-wildtype, MGMT promoter unmethylated GBM and 5 (83%) had alterations in TP53. All patients underwent surgical resection for GBM followed by radiation with concurrent and adjuvant temozolomide. Four patients (67%) received bevacizumab prior to bone metastasis diagnosis. Bone metastases were discovered at a median of 12.2 months (range: 5.3-35.2) after GBM diagnosis and 4.8 months after starting bevacizumab (range: 3.5-13.2). Three patients (50%) received immunotherapy. After osseous metastasis diagnosis, the median survival was 25 days (range: 13-225). CONCLUSION: In our cohort, most patients were male and young at the time of GBM diagnosis. All patients had IDH-wildtype, MGMT promoter unmethylated GBM, and most had alterations in TP53, which may be important for osseous metastasis. Most patients received bevacizumab, which has been associated with earlier metastasis. Osseous metastases of GBM occur and portend a dismal prognosis in an already aggressive malignancy.


Subject(s)
Bone Neoplasms , Brain Neoplasms , Glioblastoma , Humans , Male , Glioblastoma/genetics , Glioblastoma/secondary , Glioblastoma/pathology , Glioblastoma/therapy , Middle Aged , Female , Adult , Retrospective Studies , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Aged , Aged, 80 and over , Young Adult , Prognosis , Bevacizumab/therapeutic use , Tumor Suppressor Protein p53/genetics , DNA Repair Enzymes/genetics , DNA Modification Methylases , Tumor Suppressor Proteins
10.
Eye Contact Lens ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38978191

ABSTRACT

OBJECTIVES: To compare astigmatism correction after photorefractive keratectomy (PRK) using three excimer laser devices, Alcon Wavelight EX500, Schwind Amaris 1,050, and Technolas Teneo317 M2. METHODS: This retrospective study included 414 eyes from 414 subjects with a history of PRK performed using Alcon Wavelight (n=172), Schwind Amaris (n=122), and Technolas (n=120). Uncorrected & corrected distance visual acuity (UDVA & CDVA), and refractive status (spherical equivalent (SE) and vector analysis (J0 and J45)) were postoperatively recorded at the 6-month and 12-month examinations. RESULTS: The mean CDVA and J45 at 6-month and 12-month showed no statistically significant difference among the three different excimer lasers (P>0.05). There was a statistically significant difference in mean UDVA and J0 at 6-month and 12-month after PRK among the three groups, with no statistically significant difference between Alcon Wavelight and Schwind Amaris lasers, while both of the prior lasers showed a significant difference with the Technolas laser. The highest and lowest changes in the magnitude of J0 in 6-month and 12-month follow-ups were seen for the Alcon Wavelight and Technolas groups, respectively. Both Schwind Amaris and Technolas had a small hyperopic SE while the Alcon Wavelight's SE was minimally myopic. This difference in SE between Alcon Wavelight and both Schwind Amaris and Technolas reached statistical significance. CONCLUSION: While all three lasers performed well in reducing preoperative astigmatism; however, the Alcon Wavelight and Schwind Amaris were more effective in correcting astigmatism than the Technolas. The difference between the Alcon Wavelight and Schwind Amaris did not reach statistical significance.

11.
mSystems ; : e0131823, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980056

ABSTRACT

Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.

13.
medRxiv ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38946974

ABSTRACT

People with psychosis exhibit thalamo-cortical hyperconnectivity and cortico-cortical hypoconnectivity with sensory networks, however, it remains unclear if this applies to all sensory networks, whether it arises from other illness factors, or whether such differences could form the basis of a viable biomarker. To address the foregoing, we harnessed data from the Human Connectome Early Psychosis Project and computed resting-state functional connectivity (RSFC) matrices for 54 healthy controls and 105 psychosis patients. Primary visual, secondary visual ("visual2"), auditory, and somatomotor networks were defined via a recent brain network partition. RSFC was determined for 718 regions via regularized partial correlation. Psychosis patients-both affective and non-affective-exhibited cortico-cortical hypoconnectivity and thalamo-cortical hyperconnectivity in somatomotor and visual2 networks but not in auditory or primary visual networks. When we averaged the visual2 and somatomotor network connections and subtracted the thalamo-cortical and cortico-cortical connectivity values, a robust psychosis biomarker emerged (p=2e-10, Hedges' g=1.05). This "somato-visual" biomarker was present in antipsychotic-naive patients and did not depend on confounds such as psychiatric comorbidities, substance/nicotine use, stress, or anxiety. It had moderate test-retest reliability (ICC=.61) and could be recovered in five-minute scans. The marker could discriminate groups in leave-one-site-out cross-validation (AUC=.79) and improve group classification upon being added to a well-known neurocognition task. Finally, it could differentiate later-stage psychosis patients from healthy or ADHD controls in two independent data sets. These results introduce a simple and robust RSFC biomarker that can distinguish psychosis patients from controls by the early illness stages.

14.
Stat Med ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890124

ABSTRACT

Policymakers often require information on programs' long-term impacts that is not available when decisions are made. For example, while rigorous evidence from the Oregon Health Insurance Experiment (OHIE) shows that having health insurance influences short-term health and financial measures, the impact on long-term outcomes, such as mortality, will not be known for many years following the program's implementation. We demonstrate how data fusion methods may be used address the problem of missing final outcomes and predict long-run impacts of interventions before the requisite data are available. We implement this method by concatenating data on an intervention (such as the OHIE) with auxiliary long-term data and then imputing missing long-term outcomes using short-term surrogate outcomes while approximating uncertainty with replication methods. We use simulations to examine the performance of the methodology and apply the method in a case study. Specifically, we fuse data on the OHIE with data from the National Longitudinal Mortality Study and estimate that being eligible to apply for subsidized health insurance will lead to a statistically significant improvement in long-term mortality.

15.
Vet Comp Oncol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890790

ABSTRACT

Although canine pituitary masses (PM) are increasingly treated with stereotactic radiotherapy (SRT), historical literature supports superior outcomes with conventional full-course fractionated radiation therapy (FRT). A multi-institutional retrospective study was performed, including dogs with PM treated from 2016 to 2022 with SRT (total dose 30 or 35 Gy in 5 daily fractions) or FRT (total dose 50-54 Gy in 19-20 daily fractions). The influence of potential prognostic/predictive factors was assessed, including pituitary: brain height, pituitary: brain volume, sex, age and endocrine status (functional [F] vs. nonfunctional [NF] PM). Forty-four dogs with PM were included (26 F, 14 NF, 4 unknown). All patients completed protocols as scheduled (SRT = 27, FRT = 17) and two dogs had suspected Grade 1 acute neurotoxicity. During the first 6 months after RT, 5/27 (19%) dogs treated with SRT (4 F, 1 NF) and 3/17 (18%) dogs treated with FRT (all F) died or were euthanised because of progressive neurologic signs. The overall median survival time was 608 days (95% CI, 375-840 days). Young age at the time of treatment was significant for survival (p = 0.0288); the overall median survival time was 753 days for dogs <9 years of age (95% CI, 614-892 days) and 445 days for dogs ≥9 years of age (95% CI, 183-707 days). Survival time was not associated with treatment type or any other factor assessed herein. A prospective study using standardised protocols would further validate the results of the present study and potentially elucidate the predictors of early death.

16.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891077

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease for which there is no cure. Accumulating research results suggest a role for extracellular vesicles (EVs) in the pathogenesis of COPD. This study aimed to uncover the involvement of EVs and their molecular cargo in the progression of COPD by identification of EV-associated protein and microRNA (miRNA) profiles. We isolated EVs from the bronchial alveolar lavage fluid (BALF) of 18 patients with COPD and 11 healthy controls using size-exclusion chromatography. EV isolates were characterized using nanoparticle tracking analysis and protein content. Proteomic analysis revealed a higher abundance of 284 proteins (log2FC > 1) and a lower abundance of 3 proteins (log2FC < -1) in EVs derived from patients with COPD. Ingenuity pathway analysis showed that proteins enriched in COPD-associated EVs trigger inflammatory responses, including neutrophil degranulation. Variances in surface receptors and ligands associated with COPD EVs suggest a preferential interaction with alveolar cells. Small RNAseq analysis identified a higher abundance of ten miRNAs and a lower abundance of one miRNA in EVs from COPD versus controls (Basemean > 100, FDR < 0.05). Our data indicate that the molecular composition of EVs in the BALF of patients with COPD is altered compared to healthy control EVs. Several components in COPD EVs were identified that may perpetuate inflammation and alveolar tissue destruction.


Subject(s)
Bronchoalveolar Lavage Fluid , Extracellular Vesicles , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Male , Female , Middle Aged , Aged , Case-Control Studies , Proteomics/methods
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167302, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878834

ABSTRACT

Recessive mutations in the Parkin gene (PRKN) are the most common cause of young-onset inherited parkinsonism. Parkin is a multifunctional E3 ubiquitin ligase that plays a variety of roles in the cell including the degradation of proteins and the maintenance of mitochondrial homeostasis, integrity, and biogenesis. In 2001, the R275W mutation in the PRKN gene was identified in two unrelated families with a multigenerational history of postural tremor, dystonia and parkinsonism. Drosophila models of Parkin R275W showed selective and progressive degeneration of dopaminergic neuronal clusters, mitochondrial abnormalities, and prominent climbing defects. In the Prkn mouse orthologue, the amino acid R274 corresponds to human R275. Here we described an age-related motor impairment and a muscle phenotype in R274W +/+ mice. In vitro, Parkin R274W mutation correlates with abnormal myoblast differentiation, mitochondrial defects, and alteration in mitochondrial mRNA and protein levels. Our data suggest that the Parkin R274W mutation may impact mitochondrial physiology and eventually myoblast proliferation and differentiation.

18.
Res Aging ; : 1640275241261414, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886913

ABSTRACT

Aging gay and bisexual men may have negative self-images due to body image dissatisfaction and internalized ageism, resulting in psychological distress. Gay and bisexual men with HIV may be at greater risk for distress because of research linking HIV to accelerated aging. We examined associations between self-image and psychological distress, and potential mediating effects (resilience, fitness engagement), and whether these relationships were moderated by HIV serostatus. We tested our hypotheses with structural equation modeling using data from gay and bisexual men with HIV (n = 525, Mage = 57.6) and without HIV (n = 501, Mage = 62.2). We observed significant positive associations between self-image and distress and significant mediation effects (resilience, fitness engagement) that were moderated by HIV serostatus (resilience was only significant for men with HIV). We conclude that resilience interventions may be beneficial in alleviating distress from negative self-image among aging gay and bisexual men with HIV.

19.
Lancet Rheumatol ; 6(7): e438-e446, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843858

ABSTRACT

BACKGROUND: For cost-saving purposes, children and young people with juvenile idiopathic arthritis (JIA) are being switched (for non-medical reasons) from biological originators to biosimilars. Here, we aimed to investigate those who switched from an anti-tumour necrosis factor (TNF) originator to a biosimilar, regarding drug survival and disease activity, compared with a matched cohort who continued the originator. METHODS: This analysis included all patients in the UK JIA Biologics Register switching directly from an anti-TNF originator to a biosimilar of the same product. All patients were matched (age, sex, disease duration, calendar year of when patients started originator therapy, line of therapy, and International League of Associations for Rheumatology [ILAR] category) to patients continuing the originator. For those matched successfully, a Cox proportional hazard model assessed whether drug persistence differed between those who switched compared with those who continued the originator. Overall change in the 71-joint juvenile arthritis disease activity score and the proportion of patients with a clinically important worsening score (by ≥1·7 units) after 6 months was compared between cohorts. This analysis was designed to address a priority research area set by our patient partners. FINDINGS: There were 224 children and young people with non-systemic JIA (139 [62%] were female, and 85 [38%] were male) identified as switching from a biological originator to a biosimilar of the same product from Jan 1, 2017, to July 7, 2023. 143 (64%) patients were originally on adalimumab, 56 (25%) on etanercept, and 25 (11%) on infliximab. Of these, 164 patients were matched successfully to those continuing the originator. There was no evidence that patients switching were more likely to stop treatment compared with those continuing the originator, with a hazard ratio of 1·46 (95% CI 0·93-2·30). Of the 51 patients in the biosimilar group who stopped treatment, 18 (35%) switched back to the originator (14 in the first year), 28 (55%) started a different biological drug, and five (10%) discontinued all treatment by the last follow-up. Of the 87 matched patients with available disease activity, there was no evidence that JADAS-71 worsened more after 6 months, with an odds ratio of 0·71 (95% CI 0·34-1·51; p=0·38). INTERPRETATION: In this matched comparative effectiveness analysis, children and young people with JIA switched from originators to biosimilars. Disease activity was similar between patients switching compared with those continuing the originator. Three quarters of patients were still receiving their biosimilar after 1 year, with switching back to originator uncommon, at only 9% after 1 year, suggesting good tolerability of non-medical switching in this patient population. This information is reassuring to clinicians and patients regarding the effect of non-medical biological switching. FUNDING: British Society for Rheumatology, Versus Arthritis, and National Institutes for Health Research Manchester Biomedical Research Centre.


Subject(s)
Antirheumatic Agents , Arthritis, Juvenile , Biosimilar Pharmaceuticals , Drug Substitution , Humans , Arthritis, Juvenile/drug therapy , Male , Female , Biosimilar Pharmaceuticals/therapeutic use , Biosimilar Pharmaceuticals/economics , Biosimilar Pharmaceuticals/adverse effects , Child , Adolescent , Antirheumatic Agents/therapeutic use , United Kingdom , Cohort Studies , Treatment Outcome , Child, Preschool , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Infliximab/therapeutic use , Adalimumab/therapeutic use , Etanercept/therapeutic use , Biological Products/therapeutic use
20.
In Vivo ; 38(4): 1546-1556, 2024.
Article in English | MEDLINE | ID: mdl-38936937

ABSTRACT

BACKGROUND/AIM: There is concern that people who had COVID-19 will develop pulmonary fibrosis. Using mouse models, we compared pulmonary inflammation following injection of the spike protein of SARS-CoV-2 (COVID-19) to radiation-induced inflammation to demonstrate similarities between the two models. SARS-CoV-2 (COVID-19) induces inflammatory cytokines and stress responses, which are also common to ionizing irradiation-induced acute pulmonary damage. Cellular senescence, which is a late effect following exposure to SARS-CoV-2 as well as radiation, was investigated. MATERIALS AND METHODS: We evaluated the effect of SARS-CoV-2 spike protein compared to ionizing irradiation in K18-hACE2 mouse lung, human lung cell lines, and in freshly explanted human lung. We measured reactive oxygen species, DNA double-strand breaks, stimulation of transforming growth factor-beta pathways, and cellular senescence following exposure to SARS-CoV-2 spike protein, irradiation or SARS-COV-2 and irradiation. We also measured the effects of the antioxidant radiation mitigator MMS350 following irradiation or exposure to SARS-CoV-2. RESULTS: SARS-CoV-2 spike protein induced reactive oxygen species, DNA double-strand breaks, transforming growth factor-ß signaling pathways, and senescence, which were exacerbated by prior or subsequent ionizing irradiation. The water-soluble radiation countermeasure, MMS350, reduced spike protein-induced changes. CONCLUSION: In both the SARS-Co-2 and the irradiation mouse models, similar responses were seen indicating that irradiation or exposure to SARS-CoV-2 virus may lead to similar lung diseases such as pulmonary fibrosis. Combination of irradiation and SARS-CoV-2 may result in a more severe case of pulmonary fibrosis. Cellular senescence may explain some of the late effects of exposure to SARS-CoV-2 spike protein and to ionizing irradiation.


Subject(s)
COVID-19 , Cellular Senescence , Lung , Oxidative Stress , Reactive Oxygen Species , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Mice , Humans , Spike Glycoprotein, Coronavirus/metabolism , Oxidative Stress/radiation effects , Cellular Senescence/radiation effects , COVID-19/virology , Lung/virology , Lung/metabolism , Lung/pathology , Lung/radiation effects , Reactive Oxygen Species/metabolism , Disease Models, Animal , DNA Breaks, Double-Stranded/radiation effects , Cell Line , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...