Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 66(17)2021 08 27.
Article in English | MEDLINE | ID: mdl-34378546

ABSTRACT

Purpose.To provide Monte Carlo calculated beam quality correction factors (kQ) for monoenergetic proton beams using the Monte Carlo codefluka.Materials and methods.The Monte Carlo codeflukawas used to calculate the dose absorbed in a water-filled reference volume and the air-filled cavities of six plane-parallel and four cylindrical ionization chambers. The chambers were positioned at the entrance region of monoenergetic proton beams with energies between 60 and 250 MeV. Based on these dose values,fQas well askQfactors were calculated whilefQ0factors were taken from Andreoet al(2020Phys. Med. Biol.65095011).Results. kQfactors calculated in this work were found to agree with experimentally determinedkQfactors on the 1%-level, with only two exceptions with deviations of 1.4% and 1.9%. The comparison offQfactors calculated usingflukawithfQfactors calculated using the Monte Carlo codesgeant4 andpenhshowed a general good agreement for low energies, while differences for higher energies were pronounced. For high energies, in most cases the Monte Carlo codesflukaandgeant4 lead to comparable results while thefQfactors calculated withpenhare larger.Conclusion.flukacan be used to calculatekQfactors in clinical proton beams. The divergence of Monte Carlo calculatedkQfactors for high energies suggests that the role of nuclear interaction models implemented in the different Monte Carlo codes needs to be investigated in more detail.


Subject(s)
Protons , Monte Carlo Method , Radioactivity , Radiometry , Relative Biological Effectiveness
2.
Phys Med Biol ; 66(18)2021 09 07.
Article in English | MEDLINE | ID: mdl-34298533

ABSTRACT

To treat lung tumours with particle therapy, different additional tasks and challenges in treatment planning and application have to be addressed thoroughly. One of these tasks is the quantification and consideration of the Bragg peak (BP) degradation due to lung tissue: as lung is an heterogeneous tissue, the BP is broadened when particles traverse the microscopic alveoli. These are not fully resolved in clinical CT images and thus, the effect is not considered in the dose calculation. In this work, a correlation between the CT histograms of heterogeneous material and the impact on the BP curve is presented. Different inorganic materials were scanned with a conventional CT scanner and additionally, the BP degradation was measured in a proton beam and was then quantified. A model is proposed that allows an estimation of the modulation power by performing a histogram analysis on the CT scan. To validate the model for organic samples, a second measurement series was performed with frozen porcine lunge samples. This allows to investigate the possible limits of the proposed model in a set-up closer to clinical conditions. For lung substitutes, the agreement between model and measurement is within ±0.05 mm and for the organic lung samples, within ±0.15 mm. This work presents a novel, simple and efficient method to estimate if and how much a material or a distinct region (within the lung) is degrading the BP on the basis of a common clinical CT image. Up until now, only a direct in-beam measurement of the region or material of interest could answer this question.


Subject(s)
Proton Therapy , Animals , Lung/diagnostic imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Swine , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...