Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 26(44): 5713-5719, 2020.
Article in English | MEDLINE | ID: mdl-33185154

ABSTRACT

BACKGROUND: As not all target proteins can be easily screened in vitro, advanced virtual screening is becoming critical. OBJECTIVE: In this study, we demonstrate the application of reinforcement learning guided virtual screening for γ-aminobutyric acid A receptor (GABAAR) modulating peptides. METHODS: Structure-based virtual screening was performed on a receptor homology model. Screened molecules deemed to be novel were synthesized and analyzed using patch-clamp analysis. RESULTS: 13 molecules were synthesized and 11 showed positive allosteric modulation, with two showing 50% activation at the low micromolar range. CONCLUSION: Reinforcement learning guided virtual screening is a viable method for the discovery of novel molecules that modulate a difficult to screen transmembrane receptor.


Subject(s)
Receptors, GABA-A , Allosteric Regulation , Allosteric Site , Humans , Receptors, GABA-A/metabolism
2.
J Immunol ; 201(11): 3383-3391, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30348734

ABSTRACT

Toll-like receptor 4 plays an important role in the regulation of the innate and adaptive immune response. The majority of TLR4 activators currently in clinical use are derivatives of its prototypic ligand LPS. The discovery of innovative TLR4 activators has the potential of providing new therapeutic immunomodulators and adjuvants. We used computational design methods to predict and optimize a total of 53 cyclic and linear peptides targeting myeloid differentiation 2 (MD2) and cluster of differentiation 14 (CD14), both coreceptors of human TLR4. Activity of the designed peptides was first assessed using NF-κB reporter cell lines expressing either TLR4/MD2 or TLR4/CD14 receptors, then binding to CD14 and MD2 confirmed and quantified using MicroScale Thermophoresis. Finally, we incubated select peptides in human whole blood and observed their ability to induce cytokine production, either alone or in synergy with LPS. Our data demonstrate the advantage of computational design for the discovery of new TLR4 peptide activators with little structural resemblance to known ligands and indicate an efficient strategy with which to identify TLR4 targeting peptides that could be used as easy-to-produce alternatives to LPS-derived molecules in a variety of settings.


Subject(s)
Antibodies, Bispecific/genetics , Binding Sites, Antibody/genetics , Lipopolysaccharide Receptors/immunology , Lymphocyte Antigen 96/immunology , Toll-Like Receptor 4/agonists , Antibodies, Bispecific/metabolism , Cells, Cultured , Computational Biology , Humans , Ligands , Molecular Structure , NF-kappa B/metabolism , Protein Binding , Protein Conformation , Protein Engineering , Signal Transduction
3.
Hum Mol Genet ; 24(20): 5667-76, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26199317

ABSTRACT

Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.


Subject(s)
Glycogen Debranching Enzyme System/chemistry , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type IV/enzymology , Glycogen Storage Disease/enzymology , Mutation, Missense , Nervous System Diseases/enzymology , Peptides/therapeutic use , Amino Acid Sequence , Computational Biology , Glycogen Debranching Enzyme System/drug effects , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease/drug therapy , Glycogen Storage Disease/genetics , Glycogen Storage Disease Type IV/genetics , Humans , Molecular Sequence Data , Nervous System Diseases/drug therapy , Nervous System Diseases/genetics , Protein Structure, Tertiary , Sequence Alignment
4.
Front Biosci (Landmark Ed) ; 17(1): 232-47, 2012 01 01.
Article in English | MEDLINE | ID: mdl-22201741

ABSTRACT

The functional characterization of proteins presents a daily challenge r biochemical, medical and computational sciences, especially when the structures are undetermined empirically, as in the case of the Histamine H4 Receptor (H4R). H4R is a member of the GPCR superfamily that plays a vital role in immune and inflammatory responses. To date, the concept of GPCRs modeling is highlighted in textbooks and pharmaceutical pamphlets, and this group of proteins has been the subject of almost 3500 publications in the scientific literature. The dynamic nature of determining the GPCRs structure was elucidated through elegant and creative modeling methodologies, implemented by many groups around the world. H4R which belongs to the GPCR family was cloned in 2000; understandably, its biological activity was reported only 65 times in pubmed. Here we attempt to cover the fundamental concepts of H4R structure modeling and its implementation in drug discovery, especially those that have been experimentally tested and to highlight some ideas that are currently being discussed on the dynamic nature of H4R and GPCRs computerized techniques for 3D structure modeling.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, Histamine/chemistry , Amino Acid Sequence , Animals , Computer Simulation , Drug Discovery , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, Histamine/genetics , Receptors, Histamine H4 , Sequence Homology, Amino Acid
5.
Biochem Biophys Res Commun ; 368(2): 368-73, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18237545

ABSTRACT

We have recently reported that the acute phase protein serum amyloid A (SAA), is locally and differentially expressed in neoplastic tissues of human colon. In the present study, we demonstrate that SAA enhances the plasminogen activation (PA)-activity of HT-29 colon cancer cell line. Cell-associated PA-activity was measured following the plasminogen-dependent ability of the cells to cleave the chromogenic substrate S-2251. The SAA-enhanced PA-activity was inhibited by anti-SAA antibodies. These antibodies also decreased the basal PA-activity of HT-29 cells and neutralized their cytokines (Interleukin-1beta+Interleukin-6)-enhanced PA-activity. Using specific chromogenic substrates and the fibrin clot-lysis assay, we found that SAA enhances also the PA-activity mediated by purified urokinase- and tissue-type plasminogen activators. Together, the data indicate that SAA enhances plasminogen activation and suggest its possible role in plasmin(ogen)-mediated colon cancer progression.


Subject(s)
Colonic Neoplasms/metabolism , Fibrinolysin/metabolism , Plasminogen Activators/metabolism , Plasminogen/metabolism , Serum Amyloid A Protein/metabolism , HT29 Cells , Humans
6.
Biomacromolecules ; 8(9): 2768-73, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17696395

ABSTRACT

Dragline spider silk fibers have extraordinary attributes as biomaterials of superior strength and toughness. Previously we have shown that the conserved C-terminal domain of a dragline spider silk protein is necessary for directing oriented microfiber formation. Here we present for the first time a state-of-the-art model of the three-dimensional structure of this domain, and, by comparing several dragline proteins, identify its key evolutionarily conserved features. Further, using the baculovirus expression system, we produced recombinant proteins that are mutated in the unique cysteine residue present in the domain. While a conservative mutation to serine allows fiber formation, thus demonstrating that there is no need for disulfide bond formation in this system, a mutation to arginine significantly alters the local surface properties, preventing fiber formation. These experimental results are in agreement with our model, wherein the cysteine is localized in a highly conserved hydrophobic loop that we predict to be important for the protein-protein interactions of this domain and hence also for fiber formation.


Subject(s)
Conserved Sequence , Cysteine/chemistry , Cysteine/metabolism , Models, Molecular , Silk/chemistry , Spiders/chemistry , Amino Acid Sequence , Animals , Cell Line , Gene Expression Regulation , Molecular Sequence Data , Moths , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...