Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Environ Microbiol ; 77(3): 1069-75, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21131513

ABSTRACT

Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and core material but differed in either surface coating (Pt- or Ta-coated metal composites) or surface texture (smooth or rough). The MFC was inoculated with electrochemically active, neutrophilic microorganisms that had been enriched in the anodic compartments of acetate-fed MFCs over a period of 4 years. The original inoculum consisted of bioreactor sludge samples amended with Geobacter sulfurreducens strain PCA. Overall, the Pt- and Ta-coated Ti bioanodes (electrode-biofilm association) showed higher current production than the uncoated Ti bioanodes. Analyses of extracted DNA of the anodic liquid and the Pt- and Ta-coated Ti electrode biofilms indicated differences in the dominant bacterial communities. Biofilm formation on the uncoated electrodes was poor and insufficient for further analyses. Bioanode samples from the Pt- and Ta-coated Ti electrodes incubated with Fe(III) and acetate showed several Fe(III)-reducing bacteria, of which selected species were dominant, on the surface of the electrodes. In contrast, nitrate-enriched samples showed less diversity, and the enriched strains were not dominant on the electrode surface. Isolated Fe(III)-reducing strains were phylogenetically related, but not all identical, to Geobacter sulfurreducens strain PCA. Other bacterial species were also detected in the system, such as a Propionicimonas-related species that was dominant in the anodic liquid and Pseudomonas-, Clostridium-, Desulfovibrio-, Azospira-, and Aeromonas-related species.


Subject(s)
Bacteria/genetics , Bioelectric Energy Sources/microbiology , Electrodes/microbiology , Titanium , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism , Biofilms/growth & development , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Ecosystem , Electrochemistry , Equipment Design , Geobacter/classification , Geobacter/genetics , Geobacter/growth & development , Geobacter/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Appl Environ Microbiol ; 71(8): 4728-35, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16085869

ABSTRACT

Odor control and disposal of swine waste have inhibited expansion of swine production facilities throughout the United States. Swine waste odor is associated primarily with high concentrations of volatile fatty acids (VFAs). Here, we demonstrate that stimulated Fe(III) reduction in hog manure can rapidly remove the malodorous compounds and enhance methane production by 200%. As part of these studies, we enumerated the indigenous Fe(III)-reducing population in swine waste and identified members of the family Geobacteraceae as the dominant species. These organisms were present at concentrations as high as 2 x 10(5) cells g(-1). Several pure cultures of Fe(III) reducers, including Geobacter metallireducens, Geobacter humireducens, Geobacter sulfurreducens, Geobacter grbiciae, Geothrix fermentans, and Geovibrio ferrireducens, readily degraded some or all of the malodorous VFAs found in swine manure. In contrast, Shewanella algae did not degrade any of these compounds. We isolated an Fe(III) reducer, Geobacter strain NU, from materials collected from primary swine waste lagoons. This organism degraded all of the malodorous VFAs tested and readily grew in swine waste amended with Fe(III). When raw waste amended with Fe(III) was inoculated with strain NU, the VFA content rapidly decreased, corresponding with an almost complete removal of the odor. In contrast, the raw waste without Fe(III) or strain NU showed a marked increase in VFA content and a rapid pH drop. This study showed that Fe(III) supplementation combined with appropriate bioaugmentation provides a simple, cost-effective approach to deodorize and treat swine waste, removing a significant impediment to the expansion of pork production facilities.


Subject(s)
Ferric Compounds/metabolism , Geobacter/metabolism , Manure , Odorants , Swine , Waste Disposal, Fluid/methods , Animals , Culture Media , DNA, Bacterial/analysis , Fatty Acids, Volatile/metabolism , Fresh Water/microbiology , Geobacter/classification , Geobacter/genetics , Geobacter/growth & development , Industrial Microbiology/methods , Oxidation-Reduction , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL