Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 293(16): 5909-5919, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29483191

ABSTRACT

Bispecific antibodies have become important formats for therapeutic discovery. They allow for potential synergy by simultaneously engaging two separate targets and enable new functions that are not possible to achieve by using a combination of two monospecific antibodies. Antagonistic antibodies dominate drug discovery today, but only a limited number of agonistic antibodies (i.e. those that activate receptor signaling) have been described. For receptors formed by two components, engaging both of these components simultaneously may be required for agonistic signaling. As such, bispecific antibodies may be particularly useful in activating multicomponent receptor complexes. Here, we describe a biparatopic (i.e. targeting two different epitopes on the same target) format that can activate the endocrine fibroblast growth factor (FGF) 21 receptor (FGFR) complex containing ß-Klotho and FGFR1c. This format was constructed by grafting two different antigen-specific VH domains onto the VH and VL positions of an IgG, yielding a tetravalent binder with two potential geometries, a close and a distant, between the two paratopes. Our results revealed that the biparatopic molecule provides activities that are not observed with each paratope alone. Our approach could help address the challenges with heterogeneity inherent in other bispecific formats and could provide the means to adjust intramolecular distances of the antibody domains to drive optimal activity in a bispecific format. In conclusion, this format is versatile, is easy to construct and produce, and opens a new avenue for agonistic antibody discovery and development.


Subject(s)
Antibodies, Bispecific/metabolism , Fibroblast Growth Factors/metabolism , Membrane Proteins/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Animals , Binding Sites, Antibody , Cell Line , Epitopes/metabolism , Humans , Klotho Proteins , Ligands , Rats , Single-Chain Antibodies/metabolism
2.
J Pharmacol Exp Ther ; 353(1): 119-31, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653417

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as an attractive therapeutic target for cardiovascular disease. Monoclonal antibodies (mAbs) that bind PCSK9 and prevent PCSK9:low-density lipoprotein receptor complex formation reduce serum low-density lipoprotein-cholesterol (LDL-C) in vivo. PCSK9-mediated lysosomal degradation of bound mAb, however, dramatically reduces mAb exposure and limits duration of effect. Administration of high-affinity mAb1:PCSK9 complex (1:2) to mice resulted in significantly lower mAb1 exposure compared with mAb1 dosed alone in normal mice or in PCSK9 knockout mice lacking antigen. To identify mAb-binding characteristics that minimize lysosomal disposition, the pharmacokinetic behavior of four mAbs representing a diverse range of PCSK9-binding affinities at neutral (serum) and acidic (endosomal) pH was evaluated in cynomolgus monkeys. Results revealed an inverse correlation between affinity and both mAb exposure and duration of LDL-C lowering. High-affinity mAb1 exhibited the lowest exposure and shortest duration of action (6 days), whereas mAb2 displayed prolonged exposure and LDL-C reduction (51 days) as a consequence of lower affinity and pH-sensitive PCSK9 binding. mAbs with shorter endosomal PCSK9:mAb complex dissociation half-lives (<20 seconds) produced optimal exposure-response profiles. Interestingly, incorporation of previously reported Fc-region amino acid substitutions or novel loop-insertion peptides that enhance in vitro neonatal Fc receptor binding, led to only modest pharmacokinetic improvements for mAbs with pH-dependent PCSK9 binding, with only limited augmentation of pharmacodynamic activity relative to native mAbs. A pivotal role for PCSK9 in mAb clearance was demonstrated, more broadly suggesting that therapeutic mAb-binding characteristics require optimization based on target pharmacology.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cholesterol, LDL/blood , Proprotein Convertases/metabolism , Serine Endopeptidases/metabolism , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacokinetics , Humans , Hydrogen-Ion Concentration , Immunoglobulin Fc Fragments/genetics , Macaca mulatta , Male , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9 , Proprotein Convertases/genetics , Proprotein Convertases/immunology , Protein Binding , Receptors, Fc/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology
3.
PLoS One ; 7(11): e49345, 2012.
Article in English | MEDLINE | ID: mdl-23209571

ABSTRACT

Fibroblast growth factor 21 (FGF21) is a promising drug candidate for the treatment of type 2 diabetes. However, the use of wild type native FGF21 is challenging due to several limitations. Among these are its short half-life, its susceptibility to in vivo proteolytic degradation and its propensity to in vitro aggregation. We here describe a rationale-based protein engineering approach to generate a potent long-acting FGF21 analog with improved resistance to proteolysis and aggregation. A recombinant Fc-FGF21 fusion protein was constructed by fusing the Fc domain of human IgG1 to the N-terminus of human mature FGF21 via a linker peptide. The Fc positioned at the N-terminus was determined to be superior to the C-terminus as the N-terminal Fc fusion retained the ßKlotho binding affinity and the in vitro and in vivo potency similar to native FGF21. Two specific point mutations were introduced into FGF21. The leucine to arginine substitution at position 98 (L98R) suppressed FGF21 aggregation at high concentrations and elevated temperatures. The proline to glycine replacement at position 171 (P171G) eliminated a site-specific proteolytic cleavage of FGF21 identified in mice and cynomolgus monkeys. The derived Fc-FGF21(RG) molecule demonstrated a significantly improved circulating half-life while maintaining the in vitro activity similar to that of wild type protein. The half-life of Fc-FGF21(RG) was 11 h in mice and 30 h in monkeys as compared to 1-2 h for native FGF21 or Fc-FGF21 wild type. A single administration of Fc-FGF21(RG) in diabetic mice resulted in a sustained reduction in blood glucose levels and body weight gains up to 5-7 days, whereas the efficacy of FGF21 or Fc-FGF21 lasted only for 1 day. In summary, we engineered a potent and efficacious long-acting FGF21 analog with a favorable pharmaceutical property for potential clinical development.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Fibroblast Growth Factors/pharmacology , Hypoglycemic Agents/pharmacology , Protein Engineering , Recombinant Fusion Proteins/pharmacology , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Humans , Macaca fascicularis , Male , Mice , Mutation , Proteolysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
4.
Biotechnol Bioeng ; 109(11): 2770-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22573571

ABSTRACT

High levels of translational errors, both truncation and misincorporation in an Fc-fusion protein were observed. Here, we demonstrate the impact of several commercially available codon optimization services, and compare to a targeted strategy. Using the targeted strategy, only codons known to have translational errors are modified. For an Fc-fusion protein expressed in Escherichia coli, the targeted strategy, in combination with appropriate fermentation conditions, virtually eliminated misincorporation (proteins produced with a wrong amino acid sequence), and reduced the level of truncation. The use of full optimization using commercially available strategies reduced the initial errors, but introduced different misincorporations. However, truncation was higher using the targeted strategy than for most of the full optimization strategies. This targeted approach, along with monitoring of translation fidelity and careful attention to fermentation conditions is key to minimizing translational error and ensuring high-quality expression. These findings should be useful for other biopharmaceutical products, as well as any other transgenic constructs where protein quality is important.


Subject(s)
Codon , Escherichia coli/genetics , Escherichia coli/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Metabolic Engineering/methods , Protein Biosynthesis , Biotechnology/methods , Fermentation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...