Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 274(30): 21430-6, 1999 Jul 23.
Article in English | MEDLINE | ID: mdl-10409706

ABSTRACT

Rac1 and RhoA regulate membrane ruffling and stress fiber formation. Both molecules appear to exert their control from the plasma membrane. In fibroblasts stimulated with platelet-derived growth factor or lysophosphatidic acid, the reorganization of the cytoskeleton begins at specific sites on the cell surface. We now report that endogenous Rac1 and RhoA also have a polarized distribution at the cell surface. Cell fractionation and immunogold labeling show that in quiescent fibroblasts both of these molecules are concentrated in caveolae, which are plasma membrane domains that are associated with actin-rich regions of the cell. Treatment of these cells with platelet-derived growth factor stimulated the recruitment of additional Rac1 and RhoA to caveolae fractions, while lysophosphatidic acid only caused the recruitment of RhoA. We could reconstitute the recruitment of RhoA using either whole cell lysates or purified caveolae. Surprisingly, pretreatment of the lysates with exoenzyme C3 shifted both resident and recruited RhoA from caveolae to noncaveolae membranes. The shift in location was not caused by inactivation of the RhoA effector domain. Moreover, chimeric proteins containing the C-terminal consensus site for Rac1 and RhoA prenylation were constitutively targeted to caveolae fractions. These results suggest that the polarized distribution of Rho family proteins at the cell surface involves an initial targeting of the protein to caveolae and a mechanism for retaining it at this site.


Subject(s)
Cell Membrane/metabolism , Cytoskeleton/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Membrane/chemistry , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , Humans , Immunohistochemistry , Molecular Sequence Data , Rats , rac GTP-Binding Proteins , rhoA GTP-Binding Protein
2.
J Immunol ; 143(2): 749-54, 1989 Jul 15.
Article in English | MEDLINE | ID: mdl-2544649

ABSTRACT

Large granular lymphocytes (LGL) have been characterized phenotypically and functionally as cytotoxic T lymphocytes, NK cells or lymphokine-activated killer cells. The most prominent morphologic feature of LGL is large cytoplasmic granules that are thought to contain the molecules responsible for cell lysis. In this study, we describe the morphologic and functional characteristics of IL-2-dependent cytotoxic lymphocytes derived from feline PBL. Stimulation of feline PBL with Con A followed by culturing in 50 U of gibbon monkey IL-2 human rIL-2 induced long term lymphocyte cultures. These lymphocytes are cytotoxic for the feline leukemia virus-induced T cell lymphoma (FL74), in a 4-h 51Cr release assay. All cell lines are either constitutively cytotoxic for FL74 cells, or cytotoxic in a lectin-dependent cell cytotoxic assay, the latter being a characteristic of low passage cultures. In contrast, no cell lines express self lysis or lysis for other lines. [3H]TdR uptake showed that 1 U of human rIL-2 produces a 50% maximal proliferative response by feline lymphocytes suggesting a high degree of homology between the ligand binding sites of feline and human IL-2R. Feline cytotoxic lymphocytes possess abundant cytoplasm containing large azurophilic granules characteristic of LGL. These granules are bound by a bilipid membrane and contain numerous smaller membrane-bound vesicles 50 to 60 nm in diameter. A model is proposed, whereby subsequent to binding of LGL to target cell the large granules fuse to the LGL plasma membrane and release the small vesicles into the binding pocket. The vesicles then transport the lytic molecules directly and selectively to the target cell membrane.


Subject(s)
Cytotoxicity, Immunologic , Interleukin-2/pharmacology , Killer Cells, Natural/immunology , Lymphocyte Activation , Animals , Cats , Cell Line , Cells, Cultured , Cytoplasmic Granules/immunology , Cytoplasmic Granules/ultrastructure , Humans , Immunity, Innate , Killer Cells, Natural/ultrastructure , Lectins , Leukemia Virus, Feline , Lymphoma/immunology , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...