Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn J Stat Data Sci ; 3(1): 107-128, 2020.
Article in English | MEDLINE | ID: mdl-35510215

ABSTRACT

In this article, computation for the purpose of spatial visualization is presented in the context of understanding the variability in global environmental processes. Here, we generate synthetic but realistic global data sets and input them into computational algorithms that have a visualization capability; we call this a simulation-visualization system. Visualization is key here, because the algorithms which we are evaluating must respect the spatial structure of the input. We modify, augment, and integrate four existing component technologies: statistical conditional simulation, Discrete Global Grids (DGGs), Array Set Addressing, and a visualization platform for displaying our results on a globe. The internal representation of the data to be visualized is built around the need for efficient storage and computation as well as the need to move up and downresolutions in a mutually consistent way. In effect, we have constructed a Geographic Information System that is based on a DGG and has desirable data storage, computation, and visualization capabilities. We provide an example of how our simulation-visualization system may be used, by evaluating a computational algorithm called Spatial Statistical Data Fusion that was developed for use on big, remote-sensing data sets.

2.
Nat Commun ; 10(1): 939, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808880

ABSTRACT

Excessive nitrogen runoff leads to degraded water quality, harming human and ecosystem health. We examine the impact of changes in land use and land management for six combinations of socioeconomic pathways and climate outcomes, and find that societal choices will substantially impact riverine total nitrogen loading (+54% to -7%) for the continental United States by the end of the century. Regional impacts will be even larger. Increased loading is possible for both high emission and low emission pathways, due to increased food and biofuel demand, respectively. Some pathways, however, suggest that limiting climate change and eutrophication can be achieved concurrently. Precipitation changes will further exacerbate loading, resulting in a net increase of 1 to 68%. Globally, increases in cropland area and agricultural intensification will likely impact vast portions of Asia. Societal and climate trends must therefore both be considered in designing strategies for managing inland and coastal water quality.


Subject(s)
Eutrophication , Agriculture/trends , Asia , Climate Change , Ecosystem , Humans , Models, Theoretical , Nitrogen/analysis , Rivers/chemistry , Social Environment , Socioeconomic Factors , United States , Weather
3.
Sci Rep ; 7(1): 4765, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684755

ABSTRACT

Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.

4.
Science ; 357(6349): 405-408, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28751610

ABSTRACT

Eutrophication, or excessive nutrient enrichment, threatens water resources across the globe. We show that climate change-induced precipitation changes alone will substantially increase (19 ± 14%) riverine total nitrogen loading within the continental United States by the end of the century for the "business-as-usual" scenario. The impacts, driven by projected increases in both total and extreme precipitation, will be especially strong for the Northeast and the corn belt of the United States. Offsetting this increase would require a 33 ± 24% reduction in nitrogen inputs, representing a massive management challenge. Globally, changes in precipitation are especially likely to also exacerbate eutrophication in India, China, and Southeast Asia. It is therefore imperative that water quality management strategies account for the impact of projected future changes in precipitation on nitrogen loading.


Subject(s)
Climate Change , Eutrophication , Nitrogen , Water Pollution, Chemical , Water Quality , Asia, Southeastern , China , Humans , India , Rain , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...