Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 917: 170533, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38307281

ABSTRACT

The increasing use of plastic (synthetic polymers) results in the release of uncontrollable amounts of synthetic materials into the environment through waste, infrastructure, and essential goods. As plastic materials undergo weathering, a complex process unfolds, leading to the formation of pollutants, notably microplastics. This study employs multiple instrumental methods to explore the intricate abiotic degradation of the five most commonly used synthetic polymers in environmentally relevant conditions. An extensive set of analytical techniques, along with chemometric analysis of the results of Raman spectroscopy, was used to characterize the materials and evaluate the nature and extent of degradation caused by artificial weathering under temperature, humidity, and solar-like irradiation cycles. Investigation focuses on the link between abiotic weathering and the generation of micro- and nanoplastics, accompanied by molecular and surface adhesion changes, and the release of additives such as metals and metal oxides. Research reveals that microplastics may exhibit varied physical properties due to the incorporation of significant quantities of high-density additives from the parent plastic, which might influence the extraction methods and the transportation models' accuracy. At the molecular and microscopic scales, non-homogeneous pathways through which plastic decomposes during weathering were observed. The formation of additive-polymer combinations might play a pivotal role in the monitoring approaches for microplastics, presenting unique challenges in assessing the environmental impact of different plastic types. These findings offer complex insight into abiotic weathering, microplastics' generation, and the influence of additives that were previously overlooked in toxicity and health assessment studies. As plastic pollution continues to escalate, understanding these complex processes is crucial for microplastic monitoring development and adopting effective preventative measures.

2.
Sci Rep ; 13(1): 9137, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277522

ABSTRACT

Growing concern over mineral resources supply forces us to search for alternative sources of Phosphorus. The possibility to recover phosphorus from incinerated sewage sludge ashes appears to be an important aspect in anthropogenic phosphorus cycle and sustainable economy. To make phosphorus recovery efficient it is important to learn the chemical and mineral composition of ash and phosphorus speciation. The phosphorus content in the ash was over 7%, what corresponds to medium rich phosphorus ores. The main phosphorus rich mineral phases were phosphate minerals. The most widespread was tri-calcium phosphate Whitlockite with various Fe, Mg and Ca proportions. In minority Fe-PO4 and Mg-PO4 were detected. Whitlockite commonly overgrown with hematite, influences negatively mineral solubility and thus recovery potential and indicates low bioavailability of phosphorus. Considerable amount of phosphorus was found in the low crystalline matrix where phosphorus content was around 10 wt% however low crystallinity and dispersed phosphorus also does not strengthen the potential to recover this element.

3.
Article in English | MEDLINE | ID: mdl-36231552

ABSTRACT

Airborne microplastic is an emerging and widespread pollutant yet is still under-characterised and insufficiently understood. Detailed description of microplastic air pollution is crucial as it has been identified in human lungs and remote locations, highlighting the atmosphere as a medium of MP dispersion and transportation. The lack of standardization of methods for measuring and further monitoring of microplastic pollution is an obstacle towards assessment of health risks. Since the first recognition of MP presence in the atmosphere of Krakow in 2019, this research was conducted to further characterise and develop the methods for qualitative and quantitative analysis of airborne microplastic (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR); pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS); scanning electron microscopy-energy dispersive spectroscopy SEM-EDS) and pre-treatment of samples. The data were gathered in seven cycles from June 2019 to February 2020. The methods used in the study allowed the identification and analysis of the changing ratio of the different types of synthetic polymers identified in the atmospheric fallout (low-density polyethylene, nylon-66, polyethylene, polyethylene terephthalate, polypropylene and polyurethane). Observations of interactions between microplastic particles and the environment were conducted with analyses of surface changes due to degradation. Different phases attached to the microplastics surfaces, with some of the inorganic contaminants transported on these surfaces determined also to be of anthropogenic origin. The methodology proposed in this study allows further characterisation of microplastic from multiple locations to provide highly comparable data, leading to identification of the sources of this phenomenon, as well as seasonal changes.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring/methods , Humans , Nylons , Plastics/analysis , Polyethylene/analysis , Polyethylene Terephthalates , Polypropylenes/analysis , Polyurethanes , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 791: 148313, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34139499

ABSTRACT

Incinerations residues from different types of materials (sewage sludge incineration ash and municipal waste incineration ashes) can either be by-products used in industry, or can pose a serious environmental problem related to their composition and the presence of potentially hazardous elements. State regulations and standards indicate whether material is inert, non-hazardous or hazardous. These standards, however, do not provide a complete overview on the leaching behavior of potentially hazardous elements in the environment. This study presents the result of batch experiment performed in accordance with the PN-EN 12457-2 (2006) and PN-EN 12457-4 (2006) standards. The results indicated that the leachability of elements is strongly dependent on the mineral composition of the waste product (the concentration and composition of soluble phase), the chemical composition (the mobility of hazardous elements and their affinity to soluble minerals), and the pH. To ensure environmental safety a thorough characterization of the waste is required followed by qualitative assignment to a particular waste type based on available guidance. Furthermore, to avoid leaching of potentially harmful elements into soils or surface water, it is also paramount to perform environmental impact assessment of wastes used as by-product in industry e.g., as building or road construction materials (aggregate) and fertilizers.


Subject(s)
Incineration , Refuse Disposal , Coal Ash , Construction Materials , Sewage , Solid Waste , Waste Disposal Facilities
5.
Molecules ; 26(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806925

ABSTRACT

Aluminum containing silica spherical MCM-41 was synthesized and modified with copper by the template ion-exchange method (TIE) and its modified version, including treatment of the samples with ammonia solution directly after template ion-exchange (TIE-NH3). The obtained samples were characterized with respect to their chemical composition (ICP-OES), structure (XRD), texture (low temperature N2 sorption), morphology (SEM-EDS), form and aggregation of deposited copper species (UV-vis DRS), reducibility of copper species (H2-TPR), and surface acidity (NH3-TPD). The deposition of copper by the TIE-NH3 method resulted in much better dispersion of this metal on the MCM-41 surface comparing to copper introduced by TIE method. It was shown that such highly dispersed copper species, mainly monomeric Cu2+ cations, deposited on aluminum containing silica spheres of MCM-41, are significantly more catalytically effective in the NH3-SCR process than analogous catalysts containing aggregated copper oxide species. The catalysts obtained by the TIE-NH3 method effectively operated in much broader temperature and were less active in the side process of direct ammonia oxidation by oxygen.

6.
Molecules ; 26(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808858

ABSTRACT

The polycondensation of resorcinol and formaldehyde in a water-ethanol mixture using the adapted Stöber method was used to obtain resol resins. An optimization of synthesis conditions and the use of an appropriate stabilizer (e.g., poly(vinyl alcohol)) resulted in spherical grains. The resins were carbonized in the temperature range of 600-1050 °C and then chemically activated in an aqueous HNO3 solution, gaseous ammonia, or by an oxidation-reduction cycle (soaking in a HNO3 solution followed by treatment with NH3). The obtained carbons were characterized by XRD, the low-temperature adsorption of nitrogen, SEM, TGA, and XPS in order to determine degree of graphitization, porosity, shape and size of particles, and surface composition, respectively. Finally, the materials were tested in phenol adsorption. The pseudo-second order model perfectly described the adsorption kinetics. A clear correlation between the micropore volume and the adsorption capacity was found. The content of graphite domains also had a positive effect on the adsorption properties. On the other hand, the presence of heteroatoms, especially oxygen groups, resulted in the clogging of the pores and a decrease in the amount of adsorbed phenol.

7.
Environ Geochem Health ; 43(11): 4601-4626, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33913083

ABSTRACT

Eight aerosol samples were collected in Krakow using a low-volume sampler in February and March 2019 during variable meteorological conditions and times of the day, to study their single particles' properties (size, morphology and chemical composition analyzed using a scanning electron microscope fitted with an energy-dispersive spectrometer) and microbiological characteristics. The content of particles of different chemical compositions larger than 2.5 µm was low. Considering the number of the particles, submicron particles strongly dominated with a high content of ultrafine particles (nanoparticles). Tar ball-type particles were relatively common in the studied samples, while soot was the dominant component. Soot was present as small agglomerates composed of few particles, but also as bigger agglomerates. Metal-containing particles of various chemical characteristics were abundant, with transition metals commonly occurring in these particles. The physicochemical characteristics of aerosols indicate that despite a relatively low mass concentration, their adverse health impact could be very strong because of the high content of nanoparticles, the abundance of soot and other fuel combustion-related particles, and the high incidence of transition metal-rich particles. Microbiological analysis was based on cultures on both solid and liquid agar. The MALDI-TOF method was used for species identification-for bacteria and fungi. Twelve different species of bacteria were isolated from the collected samples of aerosols. The most frequently isolated species was Gram-positive sporulating Bacillus licheniformis. The isolated mold fungi were of the genus Aspergillus.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Particle Size , Particulate Matter/analysis , Poland
8.
RSC Adv ; 11(18): 10847-10859, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-35423561

ABSTRACT

Titanium-silicon ferrierites with different Si/Ti ratios and their delaminated forms were modified with copper by ion-exchange. The obtained samples were characterized with respect to their chemical composition (ICP-OES), structure (XRD), texture (N2 sorption), morphology (SEM), form and aggregation of titanium and copper species (UV-vis-DRS), reducibility of deposited copper species (H2-TPR) and surface acidity (NH3-TPD). The porous structure of the zeolitic samples strongly influenced the form and aggregation of deposited copper species. In the case of the three dimensional microporous structure of ferrierites (Ti-FER), copper was deposited mainly in the form of aggregated copper oxide species, in contrast to the open micro- and mesoporous structure of delaminated ferrierites (Ti-ITQ-6), where mainly copper in the form of monomeric cations was identified. It was shown that monomeric copper cations are more catalytically active in NO to NO2 oxidation than aggregated copper oxide species and, therefore, for the low-temperature conversion of nitrogen oxides the fast SCR reaction pathway is more effective for delaminated ferrierites modified with copper (Cu-Ti-ITQ-6) than for microporous three dimensional ferrierite catalysts (Cu-Ti-FER).

9.
Molecules ; 25(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266178

ABSTRACT

Spherical MCM-41 with various copper and iron loadings was prepared by surfactant directed co-condensation method. The obtained samples were characterized with respect to their structure (X-ray diffraction, XRD), texture (N2 sorption), morphology (scanning electron microscopy, SEM), chemical composition (inductively coupled plasma optical emission spectrometry, ICP-OES), surface acidity (temperature programmed desorption of ammonia, NH3-TPD), form, and aggregation of iron and copper species (diffuse reflectance UV-Vis spectroscopy, UV-Vis DRS) as well as their reducibility (temperature programmed reduction with hydrogen, H2-TPR). The spherical MCM-41 samples modified with transition metals were tested as catalysts of selective catalytic reduction of NO with ammonia (NH3-SCR). Copper containing catalysts presented high catalytic activity at low-temperature NH3-SCR with a very high selectivity to nitrogen, which is desired reaction products. Similar results were obtained for iron containing catalysts, however in this case the loadings and forms of iron incorporated into silica samples very strongly influenced catalytic performance of the studied samples. The efficiency of the NH3-SCR process at higher temperatures was significantly limited by the side reaction of direct ammonia oxidation. The reactivity of ammonia molecules chemisorbed on the catalysts surface in NO reduction (NH3-SCR) and their selective oxidation (NH3-SCO) was verified by temperature-programmed surface reactions.


Subject(s)
Ammonia/chemistry , Copper/chemistry , Iron/chemistry , Nitrogen/chemistry , Silicon Dioxide/chemistry , Catalysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...