Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(58): e202302235, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37477346

ABSTRACT

A modular approach to highly functional acyl (MIDA)boronates is described. It involves the generation of the hitherto unknown radical derived from acetyl (MIDA)boronate and its capture by various alkenes, including electronically unbiased, unactivated alkenes. In contrast to the anion of acetyl (MIDA)boronate, which has not so far been employed in synthesis, the corresponding radical is well behaved and readily produced from the novel α-xanthyl acetyl (MIDA)boronate. This shelf-stable, easily prepared solid is a convenient acyl (MIDA)boronate transfer agent that provides a direct entry to numerous otherwise inaccessible structures, including latent 1,4-dicarbonyl derivatives that can be transformed into B(MIDA) substituted pyrroles and furans. A competition experiment indicated the acyl (MIDA)boronate substituted radical to be more stable than the all-carbon acetonyl radical but somewhat less reactive in additions to alkenes.

2.
Angew Chem Int Ed Engl ; 61(3): e202113333, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34716652

ABSTRACT

A modular approach to substituted cyclobutylboronic esters is described. It proceeds by successive intermolecular radical additions of xanthates to pinacolato 1-cyclobutenylboronate and to pinacolato bicyclo[1.1.0]but-1-ylboronate. Success hinges on tuning the stability of the α-boryl radical by exploiting the stabilizing influence of the trivalent boronic ester and the slightly destabilizing cyclobutane, which increases the σ-character of the radical. Reductive removal of the xanthate group finally provides a range of 1,2- and 1,3-disubstituted cyclobutylboronic esters. The contrast with cyclopropylboronic esters is striking, since the strong destabilization by the highly strained cyclopropane ring allows the first radical addition to take place but not the second. Furthermore, the first adducts are geminal xanthyl boronic esters that can be converted into cyclobutanones. This chemistry furnishes cyclobutylboronic esters that would be quite difficult to obtain otherwise and thus complements existing methods.

3.
Org Lett ; 23(20): 8018-8022, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34617761

ABSTRACT

A modular, stereoselective route to trisubstituted (Z)-alkenyl (MIDA)boronates is described, consisting of the radical addition-fragmentation of dithiocarbonates to 2-(MIDA)boronyl-3-(2'-fluoro-pyridyl-6'-oxy)-alkenes. The bulky (MIDA)boronate ensures a highly stereoselective fragmentation that is enhanced by the poor stabilization of the radical adjacent to the tetravalent boron atom. The vinyl boronate precursors are prepared from propargyl alcohols by copper-catalyzed regioselective protoboration of their fluoropyridoxy derivatives, with the fluoropyridine acting as an internal directing group.

4.
Angew Chem Int Ed Engl ; 58(48): 17303-17306, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31638738

ABSTRACT

The ability of silicon to stabilize vinyl cationic species leads to a redox arylation of alkynes whereby the stringent limitations of reactivity and regioselectivity of alkyl-substituted alkynes are lifted. This allows the synthesis of a range of α-silyl-α'-arylketones under mild conditions in good to excellent yields and with high functional group tolerance, whereby the silicon moiety in the final products can either be removed for a formal acetone monoarylation transform, or capitalized upon for subsequent electrophilic substitutions at either side of the carbonyl group.

5.
Angew Chem Int Ed Engl ; 58(47): 16936-16942, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31243885

ABSTRACT

Pinacolato boronates (Bpin) with an empty p-orbital on boron stabilize an adjacent carbon radical, in contrast to diethanolamino boronates [B(DEA)] where the boron is sp3 -hybridized. By alternately placing a pinacol or diethanolamine moiety on the boron atom, thus stabilizing or not stabilizing the corresponding adjacent radical, it is possible to control the behavior of α-boronyl xanthates and construct a large variety of terminal or internal boronates in a modular fashion. The remarkable tolerance of polar groups and the ability to introduce quaternary centers are particularly noteworthy features of this process.

SELECTION OF CITATIONS
SEARCH DETAIL
...