Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Food Chem Toxicol ; 154: 112316, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34089800

ABSTRACT

Mitochondria are among the first responders to various stress factors that challenge cell and tissue homeostasis. Various plant alkaloids have been investigated for their capacity to modulate mitochondrial activities. In this study, we used isolated mitochondria from mouse brain and liver tissues to assess nicotine, anatabine and anabasine, three alkaloids found in tobacco plant, for potential modulatory activity on mitochondrial bioenergetics parameters. All alkaloids decreased basal oxygen consumption of mouse brain mitochondria in a dose-dependent manner without any effect on the ADP-stimulated respiration. None of the alkaloids, at 1 nM or 1.25 µM concentrations, influenced the maximal rate of swelling of brain mitochondria. In contrast to brain mitochondria, 1.25 µM anatabine, anabasine and nicotine increased maximal rate of swelling of liver mitochondria suggesting a toxic effect. Only at 1 mM concentration, anatabine slowed down the maximal rate of Ca2+-induced swelling and increased the time needed to reach the maximal rate of swelling. The observed mitochondrial bioenergetic effects are probably mediated through a pathway independent of nicotinic acetylcholine receptors, as quantitative proteomic analysis could not confirm their expression in pure mitochondrial fractions isolated from mouse brain tissue.


Subject(s)
Alkaloids/toxicity , Mitochondria/drug effects , Plants/chemistry , Animals , Brain/drug effects , Brain/metabolism , Energy Metabolism/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Proteomics , Receptors, Nicotinic/metabolism
2.
J Phys Chem Lett ; 11(16): 6914-6920, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32787203

ABSTRACT

Metabolic reactions in living cells are limited by diffusion of reagents in the cytoplasm. Any attempt to quantify the kinetics of biochemical reactions in the cytosol should be preceded by careful measurements of the physical properties of the cellular interior. The cytoplasm is a complex, crowded fluid characterized by effective viscosity dependent on its structure at a nanoscopic length scale. In this work, we present and validate the model describing the cytoplasmic nanoviscosity, based on measurements in seven human cell lines, for nanoprobes ranging in diameters from 1 to 150 nm. Irrespective of cell line origin (epithelial-mesenchymal, cancerous-noncancerous, male-female, young-adult), we obtained a similar dependence of the viscosity on the size of the nanoprobes, with characteristic length-scales of 20 ± 11 nm (hydrodynamic radii of major crowders in the cytoplasm) and 4.6 ± 0.7 nm (radii of intercrowder gaps). Moreover, we revealed that the cytoplasm behaves as a liquid for length scales smaller than 100 nm and as a physical gel for larger length scales.


Subject(s)
Cytoplasm/chemistry , Cell Line, Tumor , Cytoplasm/ultrastructure , Dextrans/chemistry , Diffusion , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Humans , Nanoparticles/chemistry , Particle Size , Rhodamines/chemistry , Silicon Dioxide/chemistry , Viscosity
3.
Cell Physiol Biochem ; 54(2): 230-251, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32153152

ABSTRACT

BACKGROUND/AIMS: Adverse effects of cigarette smoke on health are widely known. Heating rather than combusting tobacco is one of strategies to reduce the formation of toxicants. The sensitive nature of mitochondrial dynamics makes the mitochondria an early indicator of cellular stress. For this reason, we studied the morphology and dynamics of the mitochondrial network in human bronchial epithelial cells (BEAS-2B) exposed to total particulate matter (TPM) generated from 3R4F reference cigarette smoke and from aerosol from a new candidate modified risk tobacco product, the Tobacco Heating System (THS 2.2). METHODS: Cells were subjected to short (1 week) and chronic (12 weeks) exposure to a low (7.5 µg/mL) concentration of 3R4F TPM and low (7.5 µg/mL), medium (37.5 µg/mL), and high (150 µg/mL) concentrations of TPM from THS 2.2. Confocal microscopy was applied to assess cellular and mitochondrial morphology. Cytosolic Ca2+ levels, mitochondrial membrane potential and mitochondrial mass were measured with appropriate fluorescent probes on laser scanning cytometer. The levels of proteins regulating mitochondrial dynamics and biogenesis were determined by Western blot. RESULTS: In BEAS-2B cells exposed for one week to the low concentration of 3R4F TPM and the high concentration of THS 2.2 TPM we observed clear changes in cell morphology, mitochondrial network fragmentation, altered levels of mitochondrial fusion and fission proteins and decreased biogenesis markers. Also cellular proliferation was slowed down. Upon chronic exposure (12 weeks) many parameters were affected in the opposite way comparing to short exposure. We observed strong increase of NRF2 protein level, reorganization of mitochondrial network and activation of the mitochondrial biogenesis process. CONCLUSION: Comparison of the effects of TPMs from 3R4F and from THS 2.2 revealed, that similar extent of alterations in mitochondrial dynamics and biogenesis is observed at 7.5 µg/mL of 3R4F TPM and 150 µg/mL of THS 2.2 TPM. 7 days exposure to the investigated components of cigarette smoke evoke mitochondrial stress, while upon chronic, 12 weeks exposure the hallmarks of cellular adaptation to the stressor were visible. The results also suggest that mitochondrial stress signaling is involved in the process of cellular adaptation under conditions of chronic stress caused by 3R4F and high concentration of THS 2.2.


Subject(s)
Aerosols/chemistry , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Particulate Matter/toxicity , Calcium/metabolism , Cell Line , Fluorescent Dyes/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Microscopy, Confocal , Mitochondria/drug effects , Particulate Matter/chemistry , Smoke/adverse effects , Time Factors , Tobacco Products/analysis
4.
J Bioenerg Biomembr ; 51(4): 259-276, 2019 08.
Article in English | MEDLINE | ID: mdl-31197632

ABSTRACT

Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.


Subject(s)
Cigarette Smoking/metabolism , Mitochondria/metabolism , Nicotine , Animals , Calcium/metabolism , Cigarette Smoking/pathology , Electron Transport Chain Complex Proteins/metabolism , Humans , Mitochondria/pathology , Mitophagy/drug effects , Nicotine/adverse effects , Nicotine/pharmacokinetics , Oxidative Stress/drug effects
5.
Sci Rep ; 9(1): 5906, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976093

ABSTRACT

Biochemistry in living cells is an emerging field of science. Current quantitative bioassays are performed ex vivo, thus equilibrium constants and reaction rates of reactions occurring in human cells are still unknown. To address this issue, we present a non-invasive method to quantitatively characterize interactions (equilibrium constants, KD) directly within the cytosol of living cells. We reveal that cytosolic hydrodynamic drag depends exponentially on a probe's size, and provide a model for its determination for different protein sizes (1-70 nm). We analysed oligomerization of dynamin-related protein 1 (Drp1, wild type and mutants: K668E, G363D, C505A) in HeLa cells. We detected the coexistence of wt-Drp1 dimers and tetramers in cytosol, and determined that KD for tetramers was 0.7 ± 0.5 µM. Drp1 kinetics was modelled by independent simulations, giving computational results which matched experimental data. This robust method can be applied to in vivo determination of KD for other protein-protein complexes, or drug-target interactions.


Subject(s)
Cytosol/metabolism , Dynamins/chemistry , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Protein Multimerization , Dynamins/genetics , Dynamins/metabolism , Humans , Mitochondrial Dynamics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Transport
6.
Sci Rep ; 8(1): 8122, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802333

ABSTRACT

One of the main players in the process of mitochondrial fragmentation is dynamin-related protein 1 (Drp1), which assembles into a helical ring-like structure on the mitochondria and facilitates fission. The fission mechanism is still poorly understood and detailed information concerning oligomeric form of Drp1, its cellular distribution and the size of the fission complex is missing. To estimate oligomeric forms of Drp1 in the cytoplasm and on the mitochondria, we performed a quantitative analysis of Drp1 diffusion and distribution in gene-edited HeLa cell lines. This paper provides an insight into the fission mechanism based on the quantitative description of Drp1 cellular distribution. We found that approximately half of the endogenous GFP-Drp1 pool remained in the cytoplasm, predominantly in a tetrameric form, at a concentration of 28 ± 9 nM. The Drp1 mitochondrial pool included many different oligomeric states with equilibrium distributions that could be described by isodesmic supramolecular polymerization with a Kd of 31 ± 10 nM. We estimated the average number of Drp1 molecules forming the functional fission complex to be approximately 100, representing not more than 14% of all Drp1 oligomers. We showed that the upregulated fission induced by niclosamide is accompanied by an increase in the number of large Drp1 oligomers.


Subject(s)
GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/metabolism , Cell Survival , Cytoplasm/metabolism , Dynamins , GTP Phosphohydrolases/chemistry , HeLa Cells , Humans , Microtubule-Associated Proteins/chemistry , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Protein Transport , Viscosity
7.
Cell Death Dis ; 9(3): 332, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491385

ABSTRACT

Sites of close contact between mitochondria and the endoplasmic reticulum (ER) are known as mitochondria-associated membranes (MAM) or mitochondria-ER contacts (MERCs), and play an important role in both cell physiology and pathology. A growing body of evidence indicates that changes observed in the molecular composition of MAM and in the number of MERCs predisposes MAM to be considered a dynamic structure. Its involvement in processes such as lipid biosynthesis and trafficking, calcium homeostasis, reactive oxygen species production, and autophagy has been experimentally confirmed. Recently, MAM have also been studied in the context of different pathologies, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, type 2 diabetes mellitus and GM1-gangliosidosis. An underappreciated amount of data links MAM with aging or senescence processes. In the present review, we summarize the current knowledge of basic MAM biology, composition and action, and discuss the potential connections supporting the idea that MAM are significant players in longevity.


Subject(s)
Aging/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Animals , Cellular Senescence , Humans
8.
Food Chem Toxicol ; 115: 1-12, 2018 May.
Article in English | MEDLINE | ID: mdl-29448087

ABSTRACT

Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), in comparison with TPM from the 3R4F reference cigarette. After 1-week exposure, 3R4F TPM had a strong inhibitory effect on mitochondrial basal and maximal oxygen consumption rates compared to TPM from THS2.2. Alterations in oxidative phosphorylation were accompanied by increased mitochondrial superoxide levels and increased levels of oxidatively damaged proteins in cells exposed to 7.5 µg/mL of 3R4F TPM or 150 µg/mL of THS2.2 TPM, while cytosolic levels of reactive oxygen species were not affected. In contrast, the 12-week exposure indicated adaptation of BEAS-2B cells to long-term stress. Together, the findings indicate that 3R4F TPM had a stronger effect on oxidative phosphorylation, gene expression and proteins involved in oxidative stress than TPM from the candidate modified-risk tobacco product THS2.2.


Subject(s)
Bronchi/drug effects , Epithelial Cells/drug effects , Mitochondria/drug effects , Nicotiana/adverse effects , Particulate Matter/adverse effects , Tobacco Products/adverse effects , Bronchi/cytology , Bronchi/metabolism , Cell Line , Epithelial Cells/cytology , Humans , Inhalation Exposure , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Smoke/analysis
9.
J Phys Chem B ; 121(42): 9831-9837, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28956920

ABSTRACT

This work, based on in vivo and in vitro measurements, as well as in silico simulations, provides a consistent analysis of diffusion of polydisperse nanoparticles in the cytoplasm of living cells. Using the example of fluorescence correlation spectroscopy (FCS), we show the effect of polydispersity of probes on the experimental results. Although individual probes undergo normal diffusion, in the ensemble of probes, an effective broadening of the distribution of diffusion times occurs-similar to anomalous diffusion. We introduced fluorescently labeled dextrans into the cytoplasm of HeLa cells and found that cytoplasmic hydrodynamic drag, exponentially dependent on probe size, extraordinarily broadens the distribution of diffusion times across the focal volume. As a result, the in vivo FCS data were effectively fitted with the anomalous subdiffusion model while for a monodisperse probe the normal diffusion model was most suitable. Diffusion time obtained from the anomalous diffusion model corresponds to a probe whose size is determined by the weight-average molecular weight of the polymer. The apparent anomaly exponent decreases with increasing polydispersity of the probes. Our results and methodology can be applied in intracellular studies of the mobility of nanoparticles, polymers, or oligomerizing proteins.


Subject(s)
Cytoplasm/chemistry , Dextrans/chemistry , Diffusion , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Hydrodynamics , Spectrometry, Fluorescence
10.
Int J Mol Sci ; 18(7)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28726733

ABSTRACT

Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca 2 + handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Lipid Metabolism , Mitochondria/metabolism , Animals , Apoptosis , Biological Transport , Cell Membrane/ultrastructure , Disease Susceptibility , Endoplasmic Reticulum/ultrastructure , Humans , Mitochondria/ultrastructure , Mitochondrial Dynamics , Protein Transport
11.
Postepy Biochem ; 62(2): 127-137, 2016.
Article in Polish | MEDLINE | ID: mdl-28132464

ABSTRACT

In the cell mitochondria constitute a dynamic network undergoing continuous reshaping by fusion and fission. Mitochondrial fission is involved in several crucial cellular processes such as mitosis, apoptosis and mitophagy. Main mediator of mitochondrial fission is Dynamin related protein 1 (Drp1). This protein is able to assemble into higher order oligomers, what enables the formation of Drp1 spiral structures on the surface of mitochondrial network. These spirals constrict thanks to the energy gained from GTP hydrolysis, what results in mitochondrial fission. Mitochondrial fission process is precisely regulated by different mechanisms, especially by controlling Drp1 activity. This article presents our current understanding of mitochondrial fission with a particular focus on the role of Drp1 in this process and mechanisms that regulate activity of this protein.


Subject(s)
GTP Phosphohydrolases/physiology , Microtubule-Associated Proteins/physiology , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/physiology , Apoptosis , Dynamins/metabolism , Dynamins/physiology , GTP Phosphohydrolases/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Mitosis , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...