Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34771774

ABSTRACT

In wood-polymer composites (WPCs), regardless of the origin of the filler and its dimensions, their significant role in changing the properties of the WPCs' material was found. Given the above, it is of particular importance to determine the size of the wood filler particles after their production. In addition, it is also important to determine the degree of distribution of the filler in the polymer matrix. The methodology for determining particle size and distribution is complex, even when using image analysis computer systems. This article presents the application and implementation of the multi-stage procedure for determining the size of wood particles and the degree of their distribution in the WPCs by means of image analysis using a numerical calculation program. The procedure, co-authored by the researchers at the Koszalin University of Technology and School of Mechanical and Materials Engineering, is published in the Industrial Crops and Products 2016 Comparing the results obtained for the PP/Lignocel 3-4 and PP/Lignocel C120 composites produced under highly different conditions in the target zone, it was found that the degree of the component distribution in the polymer matrix was significantly influenced by the width of the target gap. In both cases, the best homogeneity of the material and a good distribution of the filler in the polymer matrix was achieved within the parameters that have a mild effect on the material and allow it to stay longer in the plasticizing system, i.e., Ws = 1.0-3.0 mm with simultaneous impact medium to high speed in the range n = 26-40 rpm.

2.
Nanomaterials (Basel) ; 9(3)2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30857370

ABSTRACT

Innovative solutions using biopolymer-based materials made of several constituents seems to be particularly attractive for packaging in biomedical and pharmaceutical applications. In this direction, some progress has been made in extending use of the electrospinning process towards fiber formation based on biopolymers and organic compounds for the preparation of novel packaging materials. Electrospinning can be used to create nanofiber mats characterized by high purity of the material, which can be used to create active and modern biomedical and pharmaceutical packaging. Intelligent medical and biomedical packaging with the use of polymers is a broadly and rapidly growing field of interest for industries and academia. Among various polymers, alginate has found many applications in the food sector, biomedicine, and packaging. For example, in drug delivery systems, a mesh made of nanofibres produced by the electrospinning method is highly desired. Electrospinning for biomedicine is based on the use of biopolymers and natural substances, along with the combination of drugs (such as naproxen, sulfikoxazol) and essential oils with antibacterial properties (such as tocopherol, eugenol). This is a striking method due to the ability of producing nanoscale materials and structures of exceptional quality, allowing the substances to be encapsulated and the drugs/ biologically active substances placed on polymer nanofibers. So, in this article we briefly summarize the recent advances on electrospinning of biopolymers with particular emphasis on usage of Alginate for biomedical and pharmaceutical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...