Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(10): e0273203, 2022.
Article in English | MEDLINE | ID: mdl-36251648

ABSTRACT

INTRODUCTION: Muscle weakness can lead to reduced physical function and quality of life. Computed tomography (CT) can be used to assess muscle health through measures of muscle cross-sectional area and density loss associated with fat infiltration. However, there are limited opportunities to measure muscle density in clinically acquired CT scans because a density calibration phantom, allowing for the conversion of CT Hounsfield units into density, is typically not included within the field-of-view. For bone density analysis, internal density calibration methods use regions of interest within the scan field-of-view to derive the relationship between Hounsfield units and bone density, but these methods have yet to be adapted for muscle density analysis. The objective of this study was to design and validate a CT internal calibration method for muscle density analysis. METHODOLOGY: We CT scanned 10 bovine muscle samples using two scan protocols and five scan positions within the scanner bore. The scans were calibrated using internal calibration and a reference phantom. We tested combinations of internal calibration regions of interest (e.g., air, blood, bone, muscle, adipose). RESULTS: We found that the internal calibration method using two regions of interest, air and adipose or blood, yielded accurate muscle density values (< 1% error) when compared with the reference phantom. The muscle density values derived from the internal and reference phantom calibration methods were highly correlated (R2 > 0.99). The coefficient of variation for muscle density across two scan protocols and five scan positions was significantly lower for internal calibration (mean = 0.33%) than for Hounsfield units (mean = 6.52%). There was no difference between coefficient of variation for the internal calibration and reference phantom methods. CONCLUSIONS: We have developed an internal calibration method to produce accurate and reliable muscle density measures from opportunistic computed tomography images without the need for calibration phantoms.


Subject(s)
Quality of Life , Tomography, X-Ray Computed , Animals , Bone Density , Calibration , Cattle , Muscles , Phantoms, Imaging , Tomography, X-Ray Computed/methods
2.
Med Image Anal ; 67: 101887, 2021 01.
Article in English | MEDLINE | ID: mdl-33181434

ABSTRACT

Methods for reliable femur segmentation enable the execution of quality retrospective studies and building of robust screening tools for bone and joint disease. An enhance-and-segment pipeline is proposed for proximal femur segmentation from computed tomography datasets. The filter is based on a scale-space model of cortical bone with properties including edge localization, invariance to density calibration, rotation invariance, and stability to noise. The filter is integrated with a graph cut segmentation technique guided through user provided sparse labels for rapid segmentation. Analysis is performed on 20 independent femurs. Rater proximal femur segmentation agreement was 0.21 mm (average surface distance), 0.98 (Dice similarity coefficient), and 2.34 mm (Hausdorff distance). Manual segmentation added considerable variability to measured failure load and volume (CVRMS > 5%) but not density. The proposed algorithm considerably improved inter-rater reproducibility for all three outcomes (CVRMS < 0.5%). The algorithm localized the periosteal surface accurately compared to manual segmentation but with a slight bias towards a smaller volume. Hessian-based filtering and graph cut segmentation localizes the periosteal surface of the proximal femur with comparable accuracy and improved precision compared to manual segmentation.


Subject(s)
Femur , Tomography, X-Ray Computed , Algorithms , Femur/diagnostic imaging , Humans , Reproducibility of Results , Retrospective Studies
3.
Med Eng Phys ; 78: 55-63, 2020 04.
Article in English | MEDLINE | ID: mdl-32059948

ABSTRACT

CT-based opportunistic skeletal assessment complements current osteoporosis diagnosis. Quantitative assessment by internal density calibration overcomes the limitations of phantom-based calibration. We sought to establish and validate an internal calibration technique using abdominal CT scans and establish reproducibility precision for three density calibration techniques. Ten full-body cadavers were CT scanned at the spine and pelvis with a calibration phantom. Internal calibration was performed using in-scan tissue references and deriving a voxel-specific calibration. Bone mineral density (BMD) and finite element (FE) failure load assessed skeletal health. Three independent users measured intra-exam precision by manual tissue selection. To verify results, ten subjects were imaged using an abdominal imaging protocol. Internal calibration performed equivalently to gold-standard phantom-based calibration in the cadaver spine and hip. Internal calibration BMD precision in the spine was 7 mg/cc (4.9%) and FE precision was 163 N (7.2%), whereas phantom-based precision was 3 mg/cc (1.8%) and 77 N (3.8%). Internal calibration hip BMD and FE precision was 11 mg/cc (5.3%) and 84 N (6.0%), whereas phantom-based precision was 2 mg/cc (1.3%) and 30 N (3.4%). Using the abdominal imaging protocol, internal calibration performed comparably to phantom-based calibration. Internal calibration provides BMD and FE outcome precision within 7.2% for opportunistic skeletal health assessment.


Subject(s)
Abdomen/diagnostic imaging , Bone Density , Hip/physiology , Spine/physiology , Tomography, X-Ray Computed , Aged, 80 and over , Cadaver , Calibration , Female , Finite Element Analysis , Humans , Male , Phantoms, Imaging
4.
NPJ Microgravity ; 5: 6, 2019.
Article in English | MEDLINE | ID: mdl-30886891

ABSTRACT

Concerns raised at a 2010 Bone Summit held for National Aeronautics and Space Administration Johnson Space Center led experts in finite element (FE) modeling for hip fracture prediction to propose including hip load capacity in the standards for astronaut skeletal health. The current standards for bone are based upon areal bone mineral density (aBMD) measurements by dual X-ray absorptiometry (DXA) and an adaptation of aBMD cut-points for fragility fractures. Task Group members recommended (i) a minimum permissible outcome limit (POL) for post-mission hip bone load capacity, (ii) use of FE hip load capacity to further screen applicants to astronaut corps, (iii) a minimum pre-flight standard for a second long-duration mission, and (iv) a method for assessing which post-mission physical activities might increase an astronaut's risk for fracture after return. QCT-FE models of eight astronaut were analyzed using nonlinear single-limb stance (NLS) and posterolateral fall (NLF) loading configurations. QCT data from the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort and the Rochester Epidemiology Project were analyzed using identical modeling procedures. The 75th percentile of NLS hip load capacity for fractured elderly males of the AGES cohort (9537N) was selected as a post-mission POL. The NLF model, in combination with a Probabilistic Risk Assessment tool, was used to assess the likelihood of exceeding the hip load capacity during post-flight activities. There was no recommendation to replace the current DXA-based standards. However, FE estimation of hip load capacity appeared more meaningful for younger, physically active astronauts and was recommended to supplement aBMD cut-points.

5.
J Clin Densitom ; 22(2): 219-228, 2019.
Article in English | MEDLINE | ID: mdl-29054559

ABSTRACT

Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom.


Subject(s)
Bone Density , Femur/diagnostic imaging , Tomography, X-Ray Computed/methods , Biomechanical Phenomena , Elasticity , Finite Element Analysis , Humans , Spatial Analysis , Spinal Cord Injuries , Weight-Bearing
6.
Bone ; 110: 295-303, 2018 05.
Article in English | MEDLINE | ID: mdl-29482067

ABSTRACT

INTRODUCTION: Atypical femoral fractures (AFF) are characterized as low-energy fractures of the femoral shaft or subtrochanteric region. Femoral geometry is known to play a role in AFF risk; it is hypothesized that high-risk geometries are associated with elevated femoral shaft strain. However, it is not well known which geometric parameters have the greatest effect on strain, or whether interaction between parameters is significant. The purpose of this study was to thoroughly quantify the relationship between femoral geometry and diaphyseal strain, using patient specific finite element (FE) modelling in concert with parametric mesh morphing. METHODS: Ten FE models were generated from computed tomography (CT) images of cadaveric femora. Heterogeneous material properties were assigned based on average CT intensities at element locations and models were subject to loads and boundary conditions representing the stance phase of gait. Mesh morphing was used to manipulate 8 geometric parameters: neck shaft angle (NSA), neck version angle (NV), neck length (NL), femoral length (FL), lateral bowing angle (L.Bow), anterior bowing angle (A.Bow), shaft diameter (S.Dia), and cortical bone thickness (C·Th). A 2-Level full factorial analysis was used to explore the effect of different combinations of physiologically realistic minimum and maximum values for each parameter. Statistical analysis (Generalized Estimating Equations) was used to assess main effects and first order interactions of each parameter. RESULTS: Six independent parameters and seven interaction terms had statistically significant (p<0.05) effects on peak strain and strained volume. For both measures, the greatest changes were caused by S.Dia, L.Bow, and A.Bow, and/or first order interactions involving two of these variables. CONCLUSIONS: As hypothesized, a large number of geometric measures (six) and first order interactions (seven) are associated with changes in femoral shaft strain. These measures can be evaluated radiographically, which may have important implications for future studies investigating AFF risk in clinical populations.


Subject(s)
Femoral Fractures/pathology , Femoral Fractures/prevention & control , Aged, 80 and over , Bone Density/drug effects , Bone Density Conservation Agents/therapeutic use , Female , Finite Element Analysis , Humans , Male
7.
PLoS One ; 11(11): e0166089, 2016.
Article in English | MEDLINE | ID: mdl-27820848

ABSTRACT

Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.


Subject(s)
Acid Sensing Ion Channels/metabolism , Respiratory Hypersensitivity/metabolism , Respiratory System/metabolism , Animals , Asthma/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Sensory Receptor Cells/metabolism , Substance P/metabolism , Vagus Nerve/metabolism
8.
Am J Respir Crit Care Med ; 193(4): 417-26, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26488271

ABSTRACT

RATIONALE: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. OBJECTIVES: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. METHODS: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. MEASUREMENTS AND MAIN RESULTS: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. CONCLUSIONS: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiopathology , Sarcoplasmic Reticulum/physiology , Animals , Animals, Newborn , Blotting, Western , Fluorescent Antibody Technique , Lung/physiopathology , Models, Animal , Swine
9.
Laryngoscope ; 125(10): 2398-404, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25827636

ABSTRACT

OBJECTIVES/HYPOTHESIS: Tracheal cartilage ring structural abnormalities have been reported in cystic fibrosis (CF) mice and pigs. Whether similar findings are present in humans with CF is unknown. We hypothesized that tracheal cartilage ring shape and size would be different in people with CF. STUDY DESIGN: Tracheal cartilage ring size and shape were measured in adults with (n = 21) and without CF (n = 18). METHODS: Ultrasonography was used in human subjects to noninvasively assess tracheal cartilage ring structure in both the sagittal and the transverse planes. Tracheal cartilage ring thickness was also determined from histological sections obtained from newborn non-CF and CF pigs. These values were compared with human data. RESULTS: Human CF tracheas had a greater width and were less circular in shape compared to non-CF subjects. CF tracheal cartilage rings had a greater midline cross-sectional area and were thicker compared to non-CF rings. Maximal tracheal cartilage ring thickness was also greater in both newborn CF pigs and human adults with CF, compared to non-CF controls. CONCLUSIONS: Our findings demonstrate that structural differences exist in tracheal cartilage rings in adults with CF. Comparison with newborn CF pig data suggests that some of these changes may be congenital in nature. LEVEL OF EVIDENCE: 3b


Subject(s)
Cartilage/pathology , Cystic Fibrosis/pathology , Trachea/pathology , Adolescent , Adult , Animals , Female , Humans , Male , Swine , Young Adult
10.
PLoS One ; 9(12): e113958, 2014.
Article in English | MEDLINE | ID: mdl-25437448

ABSTRACT

White-nose Syndrome (WNS) is the primary cause of over-winter mortality for little brown (Myotis lucifugus), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats, and is due to cutaneous infection with the fungus Pseudogymnoascus (Geomyces) destructans (Pd). Cutaneous infection with P. destructans disrupts torpor patterns, which is thought to lead to a premature depletion of body fat reserve. Field studies were conducted at 3 WNS-affected hibernation sites to determine if big brown bats (Eptesicus fuscus) are resistant to Pd. Radio telemetry studies were conducted during 2 winters to determine the torpor patterns of 23 free-ranging E. fuscus hibernating at a site where Pd occurs. The body fat contents of free-ranging E. fuscus and M. lucifugus during hibernation at 2 different WNS-affected sites were also determined. The numbers of bats hibernating at the same site was determined during both: a) 4-7 years prior to the arrival of Pd, and, b) 2-3 years after it first appeared at this site. The torpor bouts of big brown bats hibernating at a WNS-affected site were not significantly different in length from those previously reported for this species. The mean body fat content of E. fuscus in February was nearly twice that of M. lucifugus hibernating at the same WNS-affected sites during this month. The number of M. lucifugus hibernating at one site decreased by 99.6% after P. destructans first appeared, whereas the number of E. fuscus hibernating there actually increased by 43% during the same period. None of the E. fuscus collected during this study had any visible fungal growth or lesions on their skin, whereas virtually all the M. lucifugus collected had visible fungal growth on their wings, muzzle, and ears. These findings indicate that big brown bats are resistant to WNS.


Subject(s)
Adipose Tissue/metabolism , Chiroptera , Dermatomycoses/veterinary , Animals , Dermatomycoses/microbiology , Hibernation , Male , North America , Population Density , Remote Sensing Technology/methods
11.
Science ; 345(6198): 818-22, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25124441

ABSTRACT

Lung disease in people with cystic fibrosis (CF) is initiated by defective host defense that predisposes airways to bacterial infection. Advanced CF is characterized by a deficit in mucociliary transport (MCT), a process that traps and propels bacteria out of the lungs, but whether this deficit occurs first or is secondary to airway remodeling has been unclear. To assess MCT, we tracked movement of radiodense microdisks in airways of newborn piglets with CF. Cholinergic stimulation, which elicits mucus secretion, substantially reduced microdisk movement. Impaired MCT was not due to periciliary liquid depletion; rather, CF submucosal glands secreted mucus strands that remained tethered to gland ducts. Inhibiting anion secretion in non-CF airways replicated CF abnormalities. Thus, impaired MCT is a primary defect in CF, suggesting that submucosal glands and tethered mucus may be targets for early CF treatment.


Subject(s)
Cystic Fibrosis/physiopathology , Exocrine Glands/metabolism , Mucociliary Clearance , Mucus/metabolism , Respiratory Mucosa/physiopathology , Respiratory System/physiopathology , Animals , Animals, Newborn , Anions/metabolism , Cilia/physiology , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Disease Models, Animal , Lung/physiopathology , Methacholine Chloride/pharmacology , Swine , Trachea/physiopathology
12.
Ann Biomed Eng ; 42(4): 915-27, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24310865

ABSTRACT

The pathogenesis of cystic fibrosis (CF) airway disease is not well understood. A porcine CF model was recently generated, and these animals develop lung disease similar to humans with CF. At birth, before infection and inflammation, CF pigs have airways that are irregularly shaped and have a reduced caliber compared to non-CF pigs. We hypothesized that these airway structural abnormalities affect airflow patterns and particle distribution. To test this hypothesis we used computational fluid dynamics (CFD) on airway geometries obtained by computed tomography of newborn non-CF and CF pigs. For the same flow rate, newborn CF pig airways exhibited higher air velocity and resistance compared to non-CF. Moreover we found that, at the carina bifurcation, particles greater than 5-µm preferably distributed to the right CF lung despite almost equal airflow ventilation in non-CF and CF. CFD modeling also predicted that deposition efficiency was greater in CF compared to non-CF for 5- and 10-µm particles. These differences were most significant in the airways included in the geometry supplying the right caudal, right accessory, left caudal, and left cranial lobes. The irregular particle distribution and increased deposition in newborn CF pig airways suggest that early airway structural abnormalities might contribute to CF disease pathogenesis.


Subject(s)
Cystic Fibrosis/physiopathology , Lung/pathology , Lung/physiopathology , Animals , Animals, Genetically Modified , Animals, Newborn , Cystic Fibrosis/diagnostic imaging , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Hydrodynamics , Lung/diagnostic imaging , Pulmonary Ventilation , Swine , Tomography, X-Ray Computed
13.
Am J Respir Crit Care Med ; 188(12): 1434-41, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24168209

ABSTRACT

RATIONALE: Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. OBJECTIVES: To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. METHODS: On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. MEASUREMENTS AND MAIN RESULTS: On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. CONCLUSIONS: The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.


Subject(s)
Airway Obstruction/etiology , Cystic Fibrosis/physiopathology , Airway Obstruction/congenital , Airway Obstruction/diagnostic imaging , Airway Obstruction/pathology , Airway Resistance , Animals , Bronchi/pathology , Bronchi/physiopathology , Bronchography/methods , Cystic Fibrosis/diagnostic imaging , Cystic Fibrosis/pathology , Lung Volume Measurements , Multidetector Computed Tomography , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Swine , Trachea/diagnostic imaging , Trachea/pathology , Trachea/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...