Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Environ Biophys ; 50(3): 339-44, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21556847

ABSTRACT

A technical set-up for irradiation of subcutaneous tumours in mice with nanosecond-pulsed proton beams or continuous proton beams is described and was successfully used in a first experiment to explore future potential of laser-driven particle beams, which are pulsed due to the acceleration process, for radiation therapy. The chosen concept uses a microbeam approach. By focusing the beam to approximately 100 × 100 µm(2), the necessary fluence of 10(9) protons per cm(2) to deliver a dose of 20 Gy with one-nanosecond shot in the Bragg peak of 23 MeV protons is achieved. Electrical and mechanical beam scanning combines rapid dose delivery with large scan ranges. Aluminium sheets one millimetre in front of the target are used as beam energy degrader, necessary for adjusting the depth-dose profile. The required procedures for treatment planning and dose verification are presented. In a first experiment, 24 tumours in mice were successfully irradiated with 23 MeV protons and a single dose of 20 Gy in pulsed or continuous mode with dose differences between both modes of 10%. So far, no significant difference in tumour growth delay was observed.


Subject(s)
Proton Therapy , Radiotherapy/instrumentation , Animals , Female , Mice , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Skin Neoplasms/pathology , Skin Neoplasms/radiotherapy
2.
Radiother Oncol ; 95(1): 66-72, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20347168

ABSTRACT

BACKGROUND AND PURPOSE: Laser accelerated radiotherapy is a prospect for cancer treatment with proton and/or carbon ion beams that is currently under fast development. In principal, ultra fast, high-energy laser pulses will lead to a "pulsed" delivery of the induced ion beam with pulse durations of 1ns and below, whereas conventional proton beams deriving from a cyclotron or synchrotron apply the dose within 100 ms ("continuous"). MATERIALS AND METHODS: A simulation of both irradiation modes could be established at the Munich tandem accelerator with a 20MeV proton beam, and a wide-field fast scanning system was implemented that allowed for application of up to 5 Gy per tissue voxel in a single pulse. The relative biological effectiveness (RBE) of pulsed and continuous modes of irradiation with 20 MeV protons relative to the reference radiation 70 kV X-rays was examined in a human tissue model (3D human reconstructed skin, EpiDermFT) which preserves the three-dimensional geometric arrangement and communication of cells present in tissues in vivo. Using the induction of micronuclei (MN) in keratinocytes as the biological endpoint, the RBE was calculated as the ratio between the dose of 70 kV X-rays and 3 Gy of 20 MeV protons (pulsed or continuous) which produced equal response. RESULTS: For pulsed and continuous 20 MV proton exposures of the human skin model, RBE values of 1.08+/-0.20 and 1.22+/-0.15 versus 70 kV X-rays were obtained in a first experiment and 1.00+/-0.14 and 1.13+/-0.14 in a second experiment during distinct beam access times, respectively. The approximately 10% difference in RBE between the respective irradiation modes in both experiments was associated with large uncertainties which were not statistically significant (p approximately 0.5). CONCLUSION: These findings represent an important step on the way towards application of laser-accelerated protons for clinical radiotherapy. Further clinically relevant endpoints in normal and tumor tissue have to be evaluated.


Subject(s)
Micronuclei, Chromosome-Defective/radiation effects , Protons , Skin/radiation effects , Humans , Relative Biological Effectiveness , Skin/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...