Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Luminescence ; 39(2): e4685, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332465

ABSTRACT

Biological oxidants participate in many processes in the human body. Their excessive production causes organelle damage, which may result in the accumulation of cytotoxic mediators and cell degradation and may manifest itself in various diseases. Peroxynitrite (ONOO- ), hypochlorous acid (HOCl), hydrogen peroxide (H2 O2 ), and peroxymonocarbonate (HOOCO2 - ) are important oxidants in biology, toxicology, and various pathologies. Derivatives of coumarin, containing an oxidant-sensitive boronate group, have been recently developed for the fluorescent detection of inflammatory oxidants. Here, we report the synthesis and characterization of 4-[2-(morpholin-4-yl)-2-oxoethyl]-2-oxo-2H-chromen-7-yl boronic acid (MpC-BA) as a fluorescent probe for the detection of oxidants, with better solubility in water, high stability and fast response time toward peroxynitrite and hypochlorous acid. The effectiveness of the MpC-BA probe for the detection of peroxynitrite was measured by adding bolus ONOO- or using the co-generating superoxide and nitrogen oxide system. MpC-BA is oxidized by ONOO- to 7-hydroxy-4-[2-(morpholin-4-yl)-2-oxoethyl]-2H-chromen-2-one (MpC-OH). However, peroxynitrite-specific product (MpC-H) is formed in the minor reaction pathway. MpC-OH is also yielded in the reaction of MpC-BA with HOCl, and the subsequent formation of a chlorinated MpC-OH gives a specific product for HOCl (MpC-OHCl). H2 O2 slowly oxidizes MpC-BA. However, the addition of NaHCO3 increased the MpC-OH formation rate. We conclude that MpC-BA is potentially an improved fluorescent probe detecting peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of chlorinated and reduced coumarin(s) will help identify the oxidants detected.


Subject(s)
Fluorescent Dyes , Oxidants , Humans , Hypochlorous Acid , Peroxynitrous Acid/metabolism , Oxidation-Reduction , Coumarins , Morpholines
2.
Free Radic Biol Med ; 212: 255-270, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38122872

ABSTRACT

Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.


Subject(s)
Oxidants , Peroxynitrous Acid , Humans , Peroxynitrous Acid/metabolism , Hydrogen Peroxide , Fluorescent Dyes/chemistry , Hypochlorous Acid , Reactive Nitrogen Species/chemistry , Inflammation
3.
Redox Biol ; 67: 102905, 2023 11.
Article in English | MEDLINE | ID: mdl-37820403

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic intestinal disorders that result from an inappropriate inflammatory response to the microbiota in genetically susceptible individuals, often triggered by environmental stressors. Part of this response is the persistent inflammation and tissue injury associated with deficiency or excess of reactive oxygen species (ROS). The NADPH oxidase NOX1 is highly expressed in the intestinal epithelium, and inactivating NOX1 missense mutations are considered a risk factor for developing very early onset IBD. Albeit NOX1 has been linked to wound healing and host defence, many questions remain about its role in intestinal homeostasis and acute inflammatory conditions. Here, we used in vivo imaging in combination with inhibitor studies and germ-free conditions to conclusively identify NOX1 as essential superoxide generator for microbiota-dependent peroxynitrite production in homeostasis and during early endotoxemia. NOX1 loss-of-function variants cannot support peroxynitrite production, suggesting that the gut barrier is persistently weakened in these patients. One of the loss-of-function NOX1 variants, NOX1 p. Asn122His, features replacement of an asparagine residue located in a highly conserved HxxxHxxN motif. Modelling the NOX1-p22phox complex revealed near the distal heme an internal pocket restricted by His119 and Asn122 that is part of the oxygen reduction site. Functional studies in several human NADPH oxidases show that substitution of asparagine with amino acids with larger side chains is not tolerated, while smaller side chains can support catalytic activity. Thus, we identified a previously unrecognized structural feature required for the electron transfer mechanism in human NADPH oxidases.


Subject(s)
Asparagine , Inflammatory Bowel Diseases , Humans , Peroxynitrous Acid , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Inflammatory Bowel Diseases/genetics , Reactive Oxygen Species/metabolism , NADPH Oxidase 1/genetics
4.
Molecules ; 28(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630307

ABSTRACT

Hypochlorous acid (HOCl) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. In this report, imaging of HOCl was realized with a thiomorpholine-based probe as derivative of nitrobenzothiadiazole (NBD-S-TM). The fluorescence is based on photoinduced electron transfer by using nitrobenzothiadiazole core as a donor and thiomorpholine substituent as an acceptor. NBD-S-TM showed high sensitivity and a fast response to HOCl k = (2.6 ± 0.2) × 107 M-1s-1 with a 1:1 stoichiometry. The detection limit for HOCl was determined to be 60 nM. Furthermore, the desirable features of NBD-S-TM for the detection of HOCl in aqueous solutions, such as its reliability at physiological pH, rapid fluorescence response, and biocompatibility, enabled its application in the detection of HOCl in myeloperoxidase enzymatic system. Moreover, NBD-S-TM exhibited excellent selectivity and sensitivity for HOCl over other biologically relevant species, such as hydrogen peroxide and peroxynitrite. The fluorescent S-oxidized product (NBD-S-TSO) is only formed in the presence of HOCl. Probing with NBD-S-TM may be helpful to further the development of high throughput screening assays to monitor the activity of myeloperoxidase.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Peroxidase , Reproducibility of Results , Electron Transport
5.
Chem Res Toxicol ; 36(8): 1398-1408, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37534491

ABSTRACT

Myeloperoxidase (MPO) is an important component of the human innate immune system and the main source of a strong oxidizing and chlorinating species, hypochlorous acid (HOCl). Inadvertent, misplaced, or excessive generation of HOCl by MPO is associated with multiple human inflammatory diseases. Therefore, there is a considerable interest in the development of MPO inhibitors. Here, we report the synthesis and characterization of a boronobenzyl derivative of acetaminophen (AMBB), which can function as a proinhibitor of MPO and release acetaminophen, the inhibitor of chlorination cycle of MPO, in the presence of inflammatory oxidants, i.e., hydrogen peroxide, hypochlorous acid, or peroxynitrite. We demonstrate that the AMBB proinhibitor undergoes conversion to acetaminophen by all three oxidants, with the involvement of the primary phenolic product intermediate, with relatively long half-life at pH 7.4. The determined rate constants of the reaction of the AMBB proinhibitor with hydrogen peroxide, hypochlorous acid, or peroxynitrite are equal to 1.67, 1.6 × 104, and 1.0 × 106 M-1 s-1, respectively. AMBB showed lower MPO inhibitory activity (IC50 > 0.3 mM) than acetaminophen (IC50 = 0.14 mM) toward MPO-dependent HOCl generation. Finally, based on the determined reaction kinetics and the observed inhibitory effects of two plasma components, uric acid and albumin, on the extent of AMBB oxidation by ONOO- and HOCl, we conclude that ONOO- is the most likely potential activator of AMBB in human plasma.


Subject(s)
Acetaminophen , Oxidants , Humans , Oxidants/pharmacology , Acetaminophen/pharmacology , Hypochlorous Acid , Hydrogen Peroxide/pharmacology , Peroxidase/metabolism , Peroxynitrous Acid , Oxidation-Reduction
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122193, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36508902

ABSTRACT

A simple thiomorpholine-based fluorescent probe was designed and synthesized by combining thiomorpholine (TM) and nitrobenzenoselenadiazoles fluorophore (NBD-Se). The thiomorpholine group quenches the fluorescence of NBD-Se efficiently through the photoinduced electron transfer (PET) effect. Hypochlorous acid (HOCl) oxidizes the NBD-Se-TM probe to its fluorescent S-oxide (NBD-Se-TSO) with a 1:1 stoichiometry. The desirable features of NBD-Se-TM for detecting HOCl in aqueous solutions, such as its high sensitivity and selectivity, reliability at physiological pH, and rapid fluorescence response, enabled its application in the detection of HOCl produced by myeloperoxidase. The results proved that NBD-Se-TM is a promising fluorescent probe that can be used in screening assays for MPO inhibitors. Its high reaction rate constant with HOCl (2k = 2.0 × 107M-1s-1) indicates the possibility of application in more complex biological systems.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Reproducibility of Results , Morpholines
7.
Front Chem ; 10: 930657, 2022.
Article in English | MEDLINE | ID: mdl-35864868

ABSTRACT

Azanone (HNO, also known as nitroxyl) is the protonated form of the product of one-electron reduction of nitric oxide (•NO), and an elusive electrophilic reactive nitrogen species of increasing pharmacological significance. Over the past 20 years, the interest in the biological chemistry of HNO has increased significantly due to the numerous beneficial pharmacological effects of its donors. Increased availability of various HNO donors was accompanied by great progress in the understanding of HNO chemistry and chemical biology. This review is focused on the chemistry of HNO, with emphasis on reaction kinetics and mechanisms in aqueous solutions.

8.
Chaos ; 32(6): 063135, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35778144

ABSTRACT

This work develops the concept of the temporal network epistemology model enabling the simulation of the learning process in dynamic networks. The results of the research, conducted on the temporal social network generated using the CogSNet model and on the static topologies as a reference, indicate a significant influence of the network temporal dynamics on the outcome and flow of the learning process. It has been shown that not only the dynamics of reaching consensus is different compared to baseline models but also that previously unobserved phenomena appear, such as uninformed agents or different consensus states for disconnected components. It has also been observed that sometimes only the change of the network structure can contribute to reaching consensus. The introduced approach and the experimental results can be used to better understand the way how human communities collectively solve both complex problems at the scientific level and to inquire into the correctness of less complex but common and equally important beliefs' spreading across entire societies.


Subject(s)
Knowledge , Computer Simulation , Consensus , Humans
9.
Sci Rep ; 12(1): 9314, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35660769

ABSTRACT

MPO-derived oxidants including HOCl contribute to tissue damage and the initiation and propagation of inflammatory diseases. The search for small molecule inhibitors of myeloperoxidase, as molecular tools and potential drugs, requires the application of high throughput screening assays based on monitoring the activity of myeloperoxidase. In this study, we have compared three classes of fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid, including boronate-, aminophenyl- and thiol-based fluorogenic probes and we show that all three classes of probes are suitable for this purpose. However, probes based on the coumarin fluorophore turned out to be not reliable indicators of the inhibitors' potency. We have also determined the rate constants of the reaction between HOCl and the probes and they are equal to 1.8 × 104 M-1s-1 for coumarin boronic acid (CBA), 1.1 × 104 M-1s-1 for fluorescein based boronic acid (FLBA), 3.1 × 104 M-1s-1 for 7-(p-aminophenyl)-coumarin (APC), 1.6 × 104 M-1s-1 for 3'-(p-aminophenyl)-fluorescein (APF), and 1 × 107 M-1s-1 for 4-thiomorpholino-7-nitrobenz-2-oxa-1,3-diazole (NBD-TM). The high reaction rate constant of NBD-TM with HOCl makes this probe the most reliable tool to monitor HOCl formation in the presence of compounds showing HOCl-scavenging activity.


Subject(s)
Hypochlorous Acid , Peroxidase , Boronic Acids , Coumarins , Fluoresceins , Fluorescent Dyes
10.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884784

ABSTRACT

Azanone (HNO) is an elusive electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present a comparative kinetic study of HNO reactivity toward selected cyclic C-nucleophiles under aqueous conditions at pH 7.4. We applied the competition kinetics method, which is based on the use of a fluorescein-derived boronate probe FlBA and two parallel HNO reactions: with the studied scavenger or with O2 (k = 1.8 × 104 M-1s-1). We determined the second-order rate constants of HNO reactions with 13 structurally diverse C-nucleophiles (k = 33-20,000 M-1s-1). The results show that the reactivity of HNO toward C-nucleophiles depends strongly on the structure of the scavenger. The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with C-nucleophiles is provided.


Subject(s)
Boronic Acids/chemistry , Cyclohexanones/chemistry , Hydroxamic Acids/chemistry , Nitrogen Oxides/chemistry , Reactive Nitrogen Species/chemistry , Sulfonamides/chemistry , Nitrates/chemistry , Peroxynitrous Acid/chemistry
11.
Cell Biochem Biophys ; 79(4): 845-856, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33950351

ABSTRACT

HNO (nitroxyl, IUPAC name azanone) is an electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present data on the pH-dependent kinetics of azanone reactions with the low molecular thiols glutathione and N-acetylcysteine, as well as with important serum proteins: bovine serum albumin and human serum albumin. The competition kinetics method used is based on two parallel HNO reactions: with RSH/RS- or with O2. The results provide evidence that the reaction of azanone with the anionic form of thiols (RS-) is favored over reactions with the protonated form (RSH). The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with thiolates is provided.


Subject(s)
Sulfhydryl Compounds
12.
Chaos ; 31(3): 033130, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33810708

ABSTRACT

Multilayer networks are the underlying structures of multiple real-world systems where we have more than one type of interaction/relation between nodes: social, biological, computer, or communication, to name only a few. In many cases, they are helpful in modeling processes that happen on top of them, which leads to gaining more knowledge about these phenomena. One example of such a process is the spread of influence. Here, the members of a social system spread the influence across the network by contacting each other, sharing opinions or ideas, or-explicitly-by persuasion. Due to the importance of this process, researchers investigate which members of a social network should be chosen as initiators of influence spread to maximize the effect. In this work, we follow this direction and develop and evaluate the sequential seeding technique for multilayer networks. Until now, such techniques were evaluated only using simple one layer networks. The results show that sequential seeding in multilayer networks outperforms the traditional approach by increasing the coverage and allowing to save the seeding budget. However, it also extends the duration of the spreading process.

13.
Front Chem ; 8: 580899, 2020.
Article in English | MEDLINE | ID: mdl-33102447

ABSTRACT

Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.

14.
Sci Rep ; 10(1): 18626, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122809

ABSTRACT

Hydroethidine (HE) and hydropropidine ([Formula: see text]) are fluorogenic probes used for the detection of the intra- and extracellular superoxide radical anion ([Formula: see text]). In this study, we provide evidence that HE and [Formula: see text] react rapidly with the biologically relevant radicals, including the hydroxyl radical, peroxyl radicals, the trioxidocarbonate radical anion, nitrogen dioxide, and the glutathionyl radical, via one-electron oxidation, forming the corresponding radical cations. At physiological pH, the radical cations of the probes react rapidly with [Formula: see text], leading to the specific 2-hydroxylated cationic products. We determined the rate constants of the reaction between [Formula: see text] and the radical cations of the probes. We also synthesized N-methylated analogs of [Formula: see text] and HE which were used in mechanistic studies. Methylation of the amine groups was not found to prevent the reaction between the radical cation of the probe and the superoxide, but it significantly increased the lifetime of the radical cation and had a substantial effect on the profiles of the oxidation products by inhibiting the formation of dimeric products. We conclude that the N-methylated analogs of HE and [Formula: see text] may be used as a scaffold for the design of a new generation of probes for intra- and extracellular superoxide.

15.
Arch Biochem Biophys ; 661: 132-144, 2019 01.
Article in English | MEDLINE | ID: mdl-30448388

ABSTRACT

The recent interest in the clinical applications of Piloty's acid derivatives as HNO donors for the treatment of cardiovascular system dysfunction has led us to the examination of factors controlling HNO release from selected ortho-substituted N-hydroxysulfonamides. Here we present the kinetic and quantum mechanical studies on the mechanism of HNO release from selected ortho-substituted N-hydroxysulfonamides and in vivo examination of the antiaggregatory properties of N-hydroxy-(2-bromobenzene)sulfonamide complex with sodium salt of ß-cyclodextrin sulfobutyl ethers-ethyl ethers as compared with Angeli's salt.


Subject(s)
Hydroxamic Acids/chemistry , Nitrites/chemistry , Sulfonamides/chemistry , Boronic Acids/chemistry , Hydrogen-Ion Concentration , Hydroxamic Acids/metabolism , Isomerism , Kinetics , Nitrites/metabolism , Quantum Theory , Sulfonamides/metabolism
16.
PLoS One ; 13(10): e0205130, 2018.
Article in English | MEDLINE | ID: mdl-30325936

ABSTRACT

Usually, the launch of the diffusion process is triggered by a few early adopters-i.e., seeds of diffusion. Many studies have assumed that all seeds are activated once to initiate the diffusion process in social networks and therefore are focused on finding optimal ways of choosing these nodes according to a limited budget. Despite the advances in identifying influencing spreaders, the strategy of activating all seeds at the beginning might not be sufficient in accelerating and maximising the coverage of diffusion. Also, it does not capture real scenarios in which marketing campaigns continuously monitor and support the diffusion process by seeding more nodes. More recent studies investigate the possibility of activating additional seeds as the diffusion process goes forward. In this work, we further examine this approach and search for optimal ways of distributing seeds during the diffusion process according to a pre-allocated seeding budget. Theoretically, we show that a universally best solution does not exist, and we prove that finding an optimal distribution of supporting seeds over time for a particular network is an NP-hard problem. Numerically, we evaluate several seeding strategies on different networks regarding maximising the coverage and minimising the spreading time. We find that each network topology has a best strategy given some spreading parameters. Our findings can be crucial in identifying the best strategies for budget allocation in different scenarios such as marketing or political campaigns.


Subject(s)
Marketing , Models, Theoretical , Social Networking , Computer Simulation , Diffusion , Humans
17.
Sci Rep ; 8(1): 15697, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30356067

ABSTRACT

Human communication is commonly represented as a temporal social network, and evaluated in terms of its uniqueness. We propose a set of new entropy-based measures for human communication dynamics represented within the temporal social network as event sequences. Using real world datasets and random interaction series of different types we find that real human contact events always significantly differ from random ones. This human distinctiveness increases over time and by means of the proposed entropy measures, we can observe sociological processes that take place within dynamic communities.


Subject(s)
Communication , Entropy , Interpersonal Relations , Models, Theoretical , Social Networking , Databases, Factual , Electronic Mail/trends , Group Processes , Hospital Communication Systems/trends , Humans , Physician-Patient Relations , Students/psychology , Text Messaging/trends
18.
Sci Rep ; 8(1): 13996, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30228338

ABSTRACT

We consider here information spread which propagates with certain probability from nodes just activated to their not yet activated neighbors. Diffusion cascades can be triggered by activation of even a small set of nodes. Such activation is commonly performed in a single stage. A novel approach based on sequential seeding is analyzed here resulting in three fundamental contributions. First, we propose a coordinated execution of randomized choices to enable precise comparison of different algorithms in general. We apply it here when the newly activated nodes at each stage of spreading attempt to activate their neighbors. Then, we present a formal proof that sequential seeding delivers at least as good spread coverage as the single stage seeding does. Moreover, we also show that, under modest assumptions, sequential seeding performs provably better than the single stage seeding using the same number of seeds and node ranking. Finally, we present experimental results comparing single stage and sequential approaches on directed and undirected graphs to the well-known greedy approach to provide the objective measure of the sequential seeding benefits. Surprisingly, applying sequential seeding to a simple degree-based selection leads to higher coverage than achieved by the computationally expensive greedy approach currently considered to be the best heuristic.

19.
Free Radic Biol Med ; 128: 69-83, 2018 11 20.
Article in English | MEDLINE | ID: mdl-29704623

ABSTRACT

Nitroxyl (HNO), which according to the IUPAC recommended nomenclature should be named azanone, is the protonated one-electron reduction product of nitric oxide. Recently, it has gained a considerable attention due to the interesting pharmacological effects of its donors. Although there has been great progress in the understanding of HNO chemistry and chemical biology, it still remains the most elusive reactive nitrogen species, and its selective detection is a real challenge. The development of reliable methodologies for the direct detection of azanone is essential for the understanding of important signaling properties of this reactive intermediate and its pharmacological potential. Over the last decade, there has been considerable progress in the development of low-molecular-weight fluorogenic probes for the detection of HNO, and therefore, in this review, we have focused on the challenges and limitations of and perspectives on nitroxyl detection based on the use of such probes.


Subject(s)
Fluorescent Dyes/chemistry , Nitrogen Oxides/analysis , Animals , Humans , Signal Transduction
20.
Acta Bioeng Biomech ; 20(1): 127-134, 2018.
Article in English | MEDLINE | ID: mdl-29658525

ABSTRACT

PURPOSE: The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. METHODS: One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. RESULTS: The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. CONCLUSIONS: The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.


Subject(s)
Motor Activity/physiology , Adolescent , Biomechanical Phenomena , Body Weight , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...