Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(10): 6056-6068, 2022 05 17.
Article in English | MEDLINE | ID: mdl-34668380

ABSTRACT

Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) are increasingly reported in terrestrial and aquatic environments, but their inputs to agricultural lands are not fully understood. Here, we characterized PFAS in 47 organic waste products (OWP) applied in agricultural fields of France, including historical and recent materials. Overall, 160 PFAS from 42 classes were detected from target screening and homologue-based nontarget screening. Target PFAS were low in agriculture-derived wastes such as pig slurry, poultry manure, or dairy cattle manure (median ∑46PFAS: 0.66 µg/kg dry matter). Higher PFAS levels were reported in urban and industrial wastes, paper mill sludge, sewage sludge, or residual household waste composts (median ∑46PFAS: 220 µg/kg). Historical municipal biosolids and composts (1976-1998) were dominated by perfluorooctanesulfonate (PFOS), N-ethyl perfluorooctanesulfonamido acetic acid (EtFOSAA), and cationic and zwitterionic electrochemical fluorination precursors to PFOS. Contemporaneous urban OWP (2009-2017) were rather dominated by zwitterionic fluorotelomers, which represented on average 55% of ∑160PFAS (max: 97%). The fluorotelomer sulfonamidopropyl betaines (X:2 FTSA-PrB, median: 110 µg/kg, max: 1300 µg/kg) were the emerging class with the highest occurrence and prevalence in contemporary urban OWP. They were also detected as early as 1985. The study informs for the first time that urban sludges and composts can be a significant repository of zwitterionic and cationic PFAS.


Subject(s)
Composting , Fluorocarbons , Animals , Biosolids , Cattle , Manure , Sewage/chemistry , Swine , Waste Products
2.
Environ Sci Pollut Res Int ; 27(5): 5367-5386, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31848970

ABSTRACT

Organic waste products (OWP) application to crop lands makes possible nutrients recycling. However, it can result in long-term accumulation of trace elements (TE) in soils. The present study aimed at (i) assessing the impact of regular applications of urban composts and manure on the TE contents of topsoils and crops in a long-term field experiment, (ii) comparing the TE mass balances with the stock variations of TE in soils, and (iii) proposing a prospective evaluation of this practice, based on estimated soil safe threshold values and simulations of soil TE accumulation for 100 years. In the long-term field experiment, physico-chemical properties and TE contents (Cd, Cr, Cu, Hg, Ni, Pb and Zn) have been measured in OWP, soils, plants and leaching waters for the period 1998-2015, and used for mass balance calculations and long-term simulations of TE accumulations. The composts of green wastes and sludge (GWS) and of municipal solid waste (MSW) were the OWP with the largest TE contents, while the farmyard manure tended to have the lowest. Repeated application of OWP led to significant accumulation of Zn and Cu in the topsoil layer (not for Cr, Cd, Hg, Ni, Pb), especially with GWS, without overpassing calculated protective threshold values. No effect of repeated application of OWP has been observed on TE contents in grains (wheat, maize, barley). The positive mass balance has been dominated by the input flux of TE through OWP and resulted in the observed increases of soil stocks for Cu and Zn. Prospective simulation of soil content evolution until 2100 showed that soil content reached 0.4 mg Cd kg-1 soil (GWS, MSW), 38 mg Cu kg-1 soil (GWS) and 109 mg Zn kg-1 soil (GWS), which remained lower than protective threshold values.


Subject(s)
Composting , Metals, Heavy , Soil Pollutants , Soil/chemistry , Trace Elements , Animals , Cattle , Manure , Metals, Heavy/analysis , Metals, Heavy/chemistry , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...