Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 5(2): eaav2437, 2019 02.
Article in English | MEDLINE | ID: mdl-30801016

ABSTRACT

While a fraction of cancer patients treated with anti-PD-1 show durable therapeutic responses, most remain unresponsive, highlighting the need to better understand and improve these therapies. Using an in vivo screening approach with a customized shRNA pooled library, we identified DDR2 as a leading target for the enhancement of response to anti-PD-1 immunotherapy. Using isogenic in vivo murine models across five different tumor histologies-bladder, breast, colon, sarcoma, and melanoma-we show that DDR2 depletion increases sensitivity to anti-PD-1 treatment compared to monotherapy. Combination treatment of tumor-bearing mice with anti-PD-1 and dasatinib, a tyrosine kinase inhibitor of DDR2, led to tumor load reduction. RNA-seq and CyTOF analysis revealed higher CD8+ T cell populations in tumors with DDR2 depletion and those treated with dasatinib when either was combined with anti-PD-1 treatment. Our work provides strong scientific rationale for targeting DDR2 in combination with PD-1 inhibitors.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dasatinib/pharmacology , Discoidin Domain Receptor 2/antagonists & inhibitors , Drug Delivery Systems , Immunity, Cellular , Immunotherapy , Neoplasms, Experimental/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Discoidin Domain Receptor 2/immunology , Female , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Programmed Cell Death 1 Receptor/immunology
2.
Cancer Immunol Res ; 5(2): 157-169, 2017 02.
Article in English | MEDLINE | ID: mdl-28073775

ABSTRACT

Dasatinib, a broad-range tyrosine kinase inhibitor, induces rapid mobilization of lymphocytes and clonal expansion of cytotoxic cells in leukemia patients. Here, we investigated whether dasatinib could induce beneficial immunomodulatory effects in solid tumor models. The effects on tumor growth and on the immune system were studied in four different syngeneic mouse models (B16.OVA melanoma, 1956 sarcoma, MC38 colon, and 4T1 breast carcinoma). Both peripheral blood (PB) and tumor samples were immunophenotyped during treatment. Although in vitro dasatinib displayed no direct cytotoxicity to B16 melanoma cells, a significant decrease in tumor growth was observed in dasatinib-treated mice compared with vehicle-treated group. Further, dasatinib-treated melanoma-bearing mice had an increased proportion of CD8+ T cells in PB, together with a higher amount of tumor-infiltrating CD8+ T cells. Dasatinib-mediated antitumor efficacy was abolished when CD4+ and CD8+ T cells were depleted with antibodies. Results were confirmed in sarcoma, colon, and breast cancer models, and in all cases mice treated daily with dasatinib had a significant decrease in tumor growth. Detailed immunophenotyping of tumor tissues with CyTOF indicated that dasatinib had reduced the number of intratumoral regulatory T cells in all tumor types. To conclude, dasatinib is able to slow down the tumor growth of various solid tumor models, which is associated with the favorable blood/tumor T-cell immunomodulation. The assessment of synergistic combinatorial therapies with other immunomodulatory drugs or targeted small-molecule oncokinase inhibitors is warranted in future clinical trials. Cancer Immunol Res; 5(2); 157-69. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Dasatinib/pharmacology , Immunomodulation/drug effects , Neoplasms/immunology , Protein Kinase Inhibitors/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Female , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma, Experimental , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...