Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314870

ABSTRACT

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dyskinesias , Movement Disorders , Male , Female , Humans , Netrin-1/genetics , DCC Receptor/genetics , Movement Disorders/genetics , Mutation, Missense/genetics , Rho Guanine Nucleotide Exchange Factors/genetics
2.
Acta Neuropathol ; 146(2): 337-352, 2023 08.
Article in English | MEDLINE | ID: mdl-37184663

ABSTRACT

Spinocerebellar ataxia 34 (SCA34) is a late-onset progressive ataxia caused by a mutation in ELOVL4, a gene involved in the biosynthesis of very long-chain fatty acids (VLCFAs). We performed post-mortem neuropathological examinations on four SCA34 patients with the ELOVL4 L168F mutation and compared the findings to age-matched controls. Specific gross findings of SCA34 were limited to pontocerebellar atrophy. On light microscopy, pontine base showed neuronal loss and storage of an autofluorescent lipopigment positive on oil red O, PAS and Hale's colloidal iron and negative on Alcian blue and Luxol fast blue (LFB). Among the swollen neurons were abundant CD68+ /CD163+ /IBA1- macrophages laden with a material with similar histochemical profile as in neurons except for the lack of autofluorescence and oil red O positivity and the presence of needle-like birefringent inclusions. Normal resting IBA1 + microglia were generally absent from pontine base nuclei but present in normal numbers elsewhere in the pons. In dentate nucleus neurons, atrophy was milder than in the pontine base and the coarser storage material was LFB-positive, closely resembling lipofuscin. On electron microscopy, dentate nucleus neurons showed neuronal storage of tridimensionally organized trilaminar spicules within otherwise normal lipofuscin, while in the more affected pontine base neurons, lipofuscin was almost completely replaced by the storage material. Storage macrophages were tightly packed with stacks of unorganized trilaminar spicules, reminiscent of the storage material seen in peroxisomal disorders and thought to represent VLCFAs incorporated in complex polar lipids. In summary, we provide histochemical and ultrastructural evidence that SCA34 is a lipid storage disease, the first among the currently known SCAs, and that the storage lipid is accumulating within neuronal lipofuscin. Our findings suggest that the storage lipid is similar to the one accumulating in non-neuronal cells in peroxisomal disorders and provide the first ultrastructural description of this type of material within neurons.


Subject(s)
Lysosomal Storage Diseases , Neuronal Ceroid-Lipofuscinoses , Peroxisomal Disorders , Humans , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Lipofuscin , Ataxia/genetics , Lipids , Mutation/genetics , Eye Proteins/genetics , Membrane Proteins/genetics
3.
Sci Adv ; 9(19): eadd5501, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37172092

ABSTRACT

Mirror movements (MM) disorder is characterized by involuntary movements on one side of the body that mirror intentional movements on the opposite side. We performed genetic characterization of a family with autosomal dominant MM and identified ARHGEF7, a RhoGEF, as a candidate MM gene. We found that Arhgef7 and its partner Git1 bind directly to Dcc. Dcc is the receptor for Netrin-1, an axon guidance cue that attracts commissural axons to the midline, promoting the midline crossing of axon tracts. We show that Arhgef7 and Git1 are required for Netrin-1-mediated axon guidance and act as a multifunctional effector complex. Arhgef7/Git1 activates Rac1 and Cdc42 and inhibits Arf1 downstream of Netrin-1. Furthermore, Arhgef7/Git1, via Arf1, mediates the Netrin-1-induced increase in cell surface Dcc. Mice heterozygous for Arhgef7 have defects in commissural axon trajectories and increased symmetrical paw placements during skilled walking, a MM-like phenotype. Thus, we have delineated how ARHGEF7 mutation causes MM.


Subject(s)
Nerve Growth Factors , Tumor Suppressor Proteins , Mice , Animals , DCC Receptor/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Nerve Growth Factors/metabolism , Netrin-1/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Axons/metabolism
4.
Acta Neuropathol Commun ; 11(1): 37, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899399

ABSTRACT

Traumatic brain injury (TBI) is now recognized as an insult triggering a dynamic process of degeneration and regeneration potentially evolving for years with chronic traumatic encephalopathy (CTE) as one major complication. Neurons are at the center of the clinical manifestations, both in the acute and chronic phases. Yet, in the acute phase, conventional neuropathology detects abnormalities predominantly in the axons, if one excludes contusions and hypoxic ischemic changes. We report the finding of ballooned neurons, predominantly in the anterior cingulum, in three patients who sustained severe TBI and remained comatose until death, 2 ½ weeks to 2 ½ months after the traumatic impact. All three cases showed severe changes of traumatic diffuse axonal injury in line with acceleration/deceleration forces. The immunohistochemical profile of the ballooned neurons was like that described in neurodegenerative disorders like tauopathies which were used as controls. The presence of αB-crystallin positive ballooned neurons in the brain of patients who sustained severe craniocerebral trauma and remained comatose thereafter has never been reported. We postulate that the co-occurrence of diffuse axonal injury in the cerebral white matter and ballooned neurons in the cortex is mechanistically reminiscent of the phenomenon of chromatolysis. Experimental trauma models with neuronal chromatolytic features emphasized the presence of proximal axonal defects. In our three cases, proximal swellings were documented in the cortex and subcortical white matter. This limited retrospective report should trigger further studies in order to better establish, in recent/semi-recent TBI, the frequency of this neuronal finding and its relationship with the proximal axonal defects.


Subject(s)
Brain Injuries, Traumatic , Diffuse Axonal Injury , Humans , Coma/complications , Coma/pathology , Diffuse Axonal Injury/complications , Diffuse Axonal Injury/pathology , Retrospective Studies , Brain Injuries, Traumatic/pathology , Brain/pathology , Neurons/pathology , Axons/pathology
5.
Gut Pathog ; 15(1): 4, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36707889

ABSTRACT

Coagulase negative staphylococci (CoNS) are a heterogeneous group of bacteria that colonize different types of human epithelia. These bacteria have a highly variable pathogenic potential ranging from avirulent species to major nosocomial pathogens. Staphylococcus warneri is a CoNS species considered to be nonpathogenic. Here, we identify that S. warneri is a natural member of both human and mouse gut microbiota. In addition, we demonstrate that this bacterium is able to get internalized into human cells. We show that S. warneri efficiently invades several human cell types and, more specifically, intestinal epithelial cells, using actin-dependent mechanisms. In contrast to bona fide pathogens, S. warneri does not actively replicate within intestinal cells or resist killing by macrophages. Together, our results highlight that bacteria from the human gut microbiota that are not associated with a high pathogenic potential, can actively invade intestinal cells and may, in this way, impact intestinal physiology.

6.
J Med Entomol ; 60(1): 32-39, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36305163

ABSTRACT

The decomposition of cadavers and large vertebrate carcasses is the result of complex processes primarily influenced by ambient temperatures. Thus, low temperatures can alter decomposition by curtailing tissue autolysis and bacterial decomposition, and by limiting insect activity contributing to necromass removal. In this study, we tested whether carcass decomposition rate is modulated not only directly by temperature and insect occurrence, but also indirectly by the mediation of interactions among insects by ambient temperature. To test this, a comparative analysis of the decomposition of domestic pig carcasses in summer and fall was conducted in Atlantic Canada. The results indicated that carcass decomposition standardized to account for seasonal differences was significantly decelerated in the fall as opposed to the summer during the later decomposition stages and was sometimes incomplete. Moreover, the arrival, presence, and departure of insects from carcasses during ecological succession differed between summer and fall. Necrodes surinamensis (Fabricius) (Coleoptera: Silphidae) and Creophilus maxillosus (Linnaeus) (Coleoptera: Staphylinidae) maintained higher abundances late during succession in the fall than in the summer and their abundance was related to a decline in decomposition rates, probably because these species feed on dipteran larvae promoting necromass removal. These results demonstrate the variability in response to environmental parameters of insects of forensic importance and support the idea that slowed decomposition in the fall may be exacerbated by changes in interspecific interactions among insects. Furthermore, these results suggest that successional studies of insects carried out in the summer have little forensic utility for cadavers found in cold weather conditions.


Subject(s)
Coleoptera , Diptera , Animals , Cadaver , Deceleration , Entomology , Feeding Behavior , Insecta , Postmortem Changes , Seasons , Sus scrofa , Swine
7.
Sci Rep ; 12(1): 744, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35031649

ABSTRACT

Chemically functionalized or coated sensors are by far the most employed solution in gas sensing. However, their poor long term stability represents a concern in applications dealing with hazardous gases. Uncoated sensors are durable but their selectivity is poor or non-existent. In this study, multi-parametric discrimination is used as an alternative to selectivity for uncoated capacitive micromachined ultrasonic transducers (CMUTs). This paper shows how measuring simultaneously the attenuation coefficient and the time of flight under different nitrogen mixtures allows to identify hydrogen, carbon dioxide and methane from each other and determine their concentration along with identification of temperature and humidity drifts. Theoretical comparison and specific signal processing to deal with the issue of multiple reflections are also presented. Some potential applications are monitoring of refueling stations, vehicles and nuclear waste storage facilities.

8.
Eur J Hum Genet ; 29(11): 1719-1724, 2021 11.
Article in English | MEDLINE | ID: mdl-34483339

ABSTRACT

Mitochondrial disorders are a heterogeneous group of rare, degenerative multisystem disorders affecting the cell's core bioenergetic and signalling functions. Spontaneous improvement is rare. We describe a novel neonatal-onset mitochondriopathy in three infants with failure to thrive, hyperlactatemia, hyperammonemia, and apparent clinical resolution before 18 months. Exome sequencing showed all three probands to be identically heterozygous for a recurrent de novo substitution, c.620G>A [p.(Arg207His)] in ATP5F1A, encoding the α-subunit of complex V. Patient-derived fibroblasts exhibited multiple deficits in complex V function and expression in vitro. Structural modelling predicts the observed substitution to create an abnormal region of negative charge on ATP5F1A's ß-subunit-interacting surface, adjacent to the nearby ß subunit's active site. This disorder, which presents with life-threatening neonatal manifestations, appears to follow a remitting course; the long-term prognosis remains unknown.


Subject(s)
Mitochondrial Diseases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Catalytic Domain , Cells, Cultured , Child, Preschool , Female , Fibroblasts/metabolism , Humans , Infant , Male , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/genetics , Mutation , Phenotype
9.
Pediatr Dev Pathol ; 24(4): 309-317, 2021.
Article in English | MEDLINE | ID: mdl-33749384

ABSTRACT

INTRODUCTION: The World Health Organization currently classifies medulloblastoma (MB) into four molecular groups (WNT, SHH, Group 3 and Group 4) and four histologic subtypes (classic, desmoplastic nodular, MB with extensive nodularity, and large cell/anaplastic). "Classic" MB is the most frequent histology, but unfortunately it does not predict molecular group or patient outcome. While MB may exhibit additional histologic features outside of the traditional WHO subtypes, the clinical significance of such features, in a molecular context, is unclear. METHODS: The clinicopathologic features of 120 pediatric MB were reviewed in the context of NanoString molecular grouping. Each case was evaluated for five ancillary histologic features, including: nodularity without desmoplasia (i.e., "biphasic", B-MB), rhythmic palisades, and focal anaplasia. Molecular and histological features were statistically correlated to clinical outcome using Chi-square, log-rank, and multivariate Cox regression analysis. RESULTS: While B-MB (N = 32) and rhythmic palisades (N = 12) were enriched amongst non-WNT/SHH MB (especially Group 4), they were not statistically associated with outcome. In contrast, focal anaplasia (N = 12) was not associated with any molecular group, but did predict unfavorable outcome. CONCLUSION: These data nominate B-MB as a surrogate marker of Groups 3 and particularly 4 MB, which may earmark a clinically significant subset of cases.


Subject(s)
Biomarkers, Tumor/metabolism , Cerebellar Neoplasms/pathology , Hedgehog Proteins/metabolism , Medulloblastoma/pathology , Wnt Proteins/metabolism , Canada , Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/mortality , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Male , Medulloblastoma/diagnosis , Medulloblastoma/metabolism , Medulloblastoma/mortality , Prognosis , Retrospective Studies , Sensitivity and Specificity , Tissue Array Analysis
10.
Cell Mol Gastroenterol Hepatol ; 12(1): 354-377.e3, 2021.
Article in English | MEDLINE | ID: mdl-33545428

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is considered a health epidemic with potential devastating effects on the patients and the healthcare systems. Current preclinical models of NAFLD are invariably imperfect and generally take a long time to develop. A mouse model of survival motor neuron (SMN) depletion (Smn2B/- mice) was recently shown to develop significant hepatic steatosis in less than 2 weeks from birth. The rapid onset of fatty liver in Smn2B/- mice provides an opportunity to identify molecular markers of NAFLD. Here, we investigated whether Smn2B/- mice display typical features of NAFLD/nonalcoholic steatohepatitis (NASH). METHODS: Biochemical, histologic, electron microscopy, proteomic, and high-resolution respirometry were used. RESULTS: The Smn2B/- mice develop microvesicular steatohepatitis within 2 weeks, a feature prevented by AAV9-SMN gene therapy. Although fibrosis is not overtly apparent in histologic sections of the liver, there is molecular evidence of fibrogenesis and presence of stellate cell activation. The consequent liver damage arises from mitochondrial reactive oxygen species production and results in hepatic dysfunction in protein output, complement, coagulation, iron homeostasis, and insulin-like growth factor-1 metabolism. The NAFLD phenotype is likely due to non-esterified fatty acid overload from peripheral lipolysis subsequent to hyperglucagonemia compounded by reduced muscle use and insulin resistance. Despite the low hepatic mitochondrial content, isolated mitochondria show enhanced ß-oxidation, likely as a compensatory response, resulting in the production of reactive oxygen species. In contrast to typical NAFLD/NASH, the Smn2B/- mice lose weight because of their associated neurological condition (spinal muscular atrophy) and develop hypoglycemia. CONCLUSIONS: The Smn2B/- mice represent a good model of microvesicular steatohepatitis. Like other models, it is not representative of the complete NAFLD/NASH spectrum. Nevertheless, it offers a reliable, low-cost, early-onset model that is not dependent on diet to identify molecular players in NAFLD pathogenesis and can serve as one of the very few models of microvesicular steatohepatitis for both adult and pediatric populations.


Subject(s)
Disease Models, Animal , Fatty Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Animals , Fatty Liver/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/pathology , Survival of Motor Neuron 1 Protein/genetics
12.
Acta Neuropathol Commun ; 8(1): 188, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168084

ABSTRACT

Spinal muscular atrophy (SMA) is largely linked to deletion or mutation of the Survival motor neuron 1 (SMN1) gene located on chromosome 5q13. Type III (Kugelberg-Welander disease) is the mildest childhood form and patients may become ambulatory and have a normal life expectancy. We report the clinical history and morphological findings of a 55-year-old woman who began to experience motor problems at the age of two. She was never fully ambulatory, and her severe scoliosis required the insertion of surgical rod at age 19. Unexpectedly, around 35 years of age, she began to experience sensory symptoms best characterized as a myelo-radiculo-neuropathy with pain as the dominant symptom. Investigations never clarified the etiology of these symptoms. Molecular confirmation of SMA type III was done post-mortem. Neuropathological examination showed classic changes of lower motor neuron neurodegeneration, in line with those reported in the single molecularly confirmed case published so far, and with findings in rare cases reported prior to the discovery of the gene defect. A key autopsy finding was the presence of a severe superficial siderosis of the lower half of the spinal cord. In recent years, the concept of duropathy was put forward, associating superficial siderosis of the spinal cord with various spinal abnormalities, some of which were present in our patient. The presence of significant hemosiderin deposits in the spinal cord and sensory nerve roots with associated tissue and axonal damage provide a plausible explanation for the unexpected sensory symptomatology in this mild lower motor neurodegeneration.


Subject(s)
Hemosiderin/metabolism , Hemosiderosis/pathology , Neuralgia/physiopathology , Radiculopathy/physiopathology , Spinal Cord Diseases/pathology , Spinal Muscular Atrophies of Childhood/pathology , Female , Hemosiderosis/metabolism , Hemosiderosis/physiopathology , Humans , Hyperalgesia/physiopathology , Middle Aged , Paresthesia/physiopathology , Spinal Cord Diseases/complications , Spinal Cord Diseases/metabolism , Spinal Cord Diseases/physiopathology , Spinal Muscular Atrophies of Childhood/complications , Spinal Muscular Atrophies of Childhood/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
13.
Child Neurol Open ; 7: 2329048X20934914, 2020.
Article in English | MEDLINE | ID: mdl-32613026

ABSTRACT

Exposure to n-hexane or toluene-containing solvents such as glue or gasoline can produce clinical symptoms and neurophysiological findings that can mimic chronic inflammatory demyelinating polyneuropathy. The authors present a case of a boy with severe sensorimotor polyneuropathy with demyelinating features. Cerebrospinal fluid testing and magnetic resonance imaging spine did not show findings typical of chronic inflammatory demyelinating polyneuropathy. His lack of response to immunosuppressive therapy prompted a nerve biopsy which was instrumental in confirming a diagnosis of chronic organic solvent exposure, subsequently confirmed on history. This case highlights the importance of additional testing to ensure diagnostic certainty which allows appropriate treatment and/or disease management to be tailored appropriately including in this instance, the involvement of mental health counseling and avoidance of immunosuppressant medication.

14.
EBioMedicine ; 55: 102750, 2020 May.
Article in English | MEDLINE | ID: mdl-32339936

ABSTRACT

BACKGROUND: Mouse models of mild spinal muscular atrophy (SMA) have been extremely challenging to generate. This paucity of model systems has limited our understanding of pathophysiological events in milder forms of the disease and of the effect of SMN depletion during aging. METHODS: A mild mouse model of SMA, termed Smn2B/-;SMN2+/-, was generated by crossing Smn-/-;SMN2 and Smn2B/2B mice. This new model was characterized using behavioral testing, histology, western blot, muscle-nerve electrophysiology as well as ultrasonography to study classical SMA features and extra-neuronal involvement. FINDINGS: Smn2B/-;SMN2+/- mice have normal survival, mild but sustained motor weakness, denervation and neuronal/neuromuscular junction (NMJ) transmission defects, and neurogenic muscle atrophy that are more prominent in male mice. Increased centrally located nuclei, intrinsic contractile and relaxation muscle defects were also identified in both female and male mice, with some male predominance. There was an absence of extra-neuronal pathology. INTERPRETATION: The Smn2B/-;SMN2+/- mouse provides a model of mild SMA, displaying some hallmark features including reduced weight, sustained motor weakness, electrophysiological transmission deficit, NMJ defects, and muscle atrophy. Early and prominent increase central nucleation and intrinsic electrophysiological deficits demonstrate the potential role played by muscle in SMA disease. The use of this model will allow for the understanding of the most susceptible pathogenic molecular changes in motor neurons and muscles, investigation of the effects of SMN depletion in aging, sex differences and most importantly will provide guidance for the currently aging SMA patients treated with the recently approved genetic therapies. FUNDING: This work was supported by Cure SMA/Families of SMA Canada (grant numbers KOT-1819 and KOT-2021); Muscular Dystrophy Association (USA) (grant number 575466); and Canadian Institutes of Health Research (CIHR) (grant number PJT-156379).


Subject(s)
Aging/genetics , Disease Models, Animal , Muscle, Skeletal/physiopathology , Muscular Atrophy, Spinal/physiopathology , Neuromuscular Junction/physiopathology , Survival of Motor Neuron 1 Protein/genetics , Aging/metabolism , Aging/pathology , Animals , Body Weight , Female , Gene Expression , Gene Knockout Techniques , Longevity/genetics , Male , Mice , Mice, Knockout , Motor Activity , Motor Neurons/cytology , Motor Neurons/metabolism , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Neuromuscular Junction/metabolism , Sciatic Nerve/metabolism , Sciatic Nerve/physiopathology , Severity of Illness Index , Sex Factors , Survival of Motor Neuron 1 Protein/metabolism , Synaptic Transmission/physiology , Tissue Culture Techniques
15.
Micromachines (Basel) ; 10(12)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766525

ABSTRACT

The stress state is a crucial parameter for the design of innovative microelectromechanical systems based on silicon carbide (SiC) material. Hence, mechanical properties of such structures highly depend on the fabrication process. Despite significant progresses in thin-film growth and fabrication process, monitoring the strain of the suspended SiC thin-films is still challenging. However, 3C-SiC membranes on silicon (Si) substrates have been demonstrated, but due to the low quality of the SiC/Si heteroepitaxy, high levels of residual strains were always observed. In order to achieve promising self-standing films with low residual stress, an alternative micromachining technique based on electrochemical etching of high quality homoepitaxy 4H-SiC layers was evaluated. This work is dedicated to the determination of their mechanical properties and more specifically, to the characterization of a 4H-SiC freestanding film with a circular shape. An inverse problem method was implemented, where experimental results obtained from bulge test are fitted with theoretical static load-deflection curves of the stressed membrane. To assess data validity, the dynamic behavior of the membrane was also investigated: Experimentally, by means of laser Doppler vibrometry (LDV) and theoretically, by means of finite element computations. The two methods provided very similar results since one obtained a Young's modulus of 410 GPa and a residual stress value of 41 MPa from bulge test against 400 GPa and 30 MPa for the LDV analysis. The determined Young's modulus is in good agreement with literature values. Moreover, residual stress values demonstrate that the fabrication of low-stressed SiC films is achievable thanks to the micromachining process developed.

16.
Nat Commun ; 10(1): 4343, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554817

ABSTRACT

Infant gliomas have paradoxical clinical behavior compared to those in children and adults: low-grade tumors have a higher mortality rate, while high-grade tumors have a better outcome. However, we have little understanding of their biology and therefore cannot explain this behavior nor what constitutes optimal clinical management. Here we report a comprehensive genetic analysis of an international cohort of clinically annotated infant gliomas, revealing 3 clinical subgroups. Group 1 tumors arise in the cerebral hemispheres and harbor alterations in the receptor tyrosine kinases ALK, ROS1, NTRK and MET. These are typically single-events and confer an intermediate outcome. Groups 2 and 3 gliomas harbor RAS/MAPK pathway mutations and arise in the hemispheres and midline, respectively. Group 2 tumors have excellent long-term survival, while group 3 tumors progress rapidly and do not respond well to chemoradiation. We conclude that infant gliomas comprise 3 subgroups, justifying the need for specialized therapeutic strategies.


Subject(s)
Brain Neoplasms/genetics , DNA Methylation , Epigenomics/methods , Gene Expression Regulation, Neoplastic , Glioma/genetics , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Brain Neoplasms/classification , Brain Neoplasms/metabolism , Female , Glioma/classification , Glioma/metabolism , Humans , Infant , Infant, Newborn , Male , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, trkA/genetics , Receptor, trkA/metabolism , Survival Analysis , Exome Sequencing/methods
17.
Ann Clin Transl Neurol ; 6(8): 1519-1532, 2019 08.
Article in English | MEDLINE | ID: mdl-31402618

ABSTRACT

OBJECTIVE: Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder leading to paralysis and subsequent death in young children. Initially considered a motor neuron disease, extra-neuronal involvement is increasingly recognized. The primary goal of this study was to investigate alterations in lipid metabolism in SMA patients and mouse models of the disease. METHODS: We analyzed clinical data collected from a large cohort of pediatric SMA type I-III patients as well as SMA type I liver necropsy data. In parallel, we performed histology, lipid analysis, and transcript profiling in mouse models of SMA. RESULTS: We identify an increased susceptibility to developing dyslipidemia in a cohort of 72 SMA patients and liver steatosis in pathological samples. Similarly, fatty acid metabolic abnormalities were present in all SMA mouse models studied. Specifically, Smn2B/- mice displayed elevated hepatic triglycerides and dyslipidemia, resembling non-alcoholic fatty liver disease (NAFLD). Interestingly, this phenotype appeared prior to denervation. INTERPRETATION: This work highlights metabolic abnormalities as an important feature of SMA, suggesting implementation of nutritional and screening guidelines in patients, as such defects are likely to increase metabolic distress and cardiovascular risk. This study emphasizes the need for a systemic therapeutic approach to ensure maximal benefits for all SMA patients throughout their life.


Subject(s)
Dyslipidemias/etiology , Fatty Acids/genetics , Fatty Acids/metabolism , Fatty Liver/etiology , Muscular Atrophy, Spinal/complications , Animals , Child , Child, Preschool , Disease Models, Animal , Dyslipidemias/genetics , Dyslipidemias/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Humans , Infant , Lipid Metabolism/genetics , Male , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Survival of Motor Neuron 1 Protein/genetics , Triglycerides/metabolism
18.
Cancer Cell ; 36(1): 51-67.e7, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31287992

ABSTRACT

Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death.


Subject(s)
Brain Neoplasms/etiology , Chromosomes, Human, Pair 19 , MicroRNAs/genetics , Multigene Family , N-Myc Proto-Oncogene Protein/genetics , Neoplasms, Germ Cell and Embryonal/etiology , RNA-Binding Proteins/genetics , Biomarkers, Tumor , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Cell Cycle/genetics , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Chromosomes, Human, Pair 2 , DNA Copy Number Variations , Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Expression Regulation , Gene Regulatory Networks , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Models, Biological , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/therapy , Oncogenes
19.
Neuron ; 102(6): 1157-1171.e5, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31054872

ABSTRACT

During development, Shh attracts commissural axons toward the floor plate through a non-canonical, transcription-independent signaling pathway that requires the receptor Boc. Here, we find that Shh induces Boc internalization into early endosomes and that endocytosis is required for Shh-mediated growth-cone turning. Numb, an endocytic adaptor, binds to Boc and is required for Boc internalization, Shh-mediated growth-cone turning in vitro, and commissural axon guidance in vivo. Similar to Boc, Ptch1 is also internalized by Shh in a Numb-dependent manner; however, the binding of Shh to Ptch1 alone is not sufficient to induce Ptch1 internalization nor growth-cone turning. Therefore, the binding of Shh to Boc is required for Ptch1 internalization and growth-cone turning. Our data support a model where Boc endocytosis via Numb is required for Ptch1 internalization and Shh signaling in axon guidance. Thus, Boc acts as a Shh-dependent endocytic platform gating Ptch1 internalization and Shh signaling.


Subject(s)
Axon Guidance/genetics , Endocytosis/genetics , Growth Cones/metabolism , Hedgehog Proteins/metabolism , Immunoglobulin G/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Neurons/metabolism , Patched-1 Receptor/metabolism , Receptors, Cell Surface/metabolism , Animals , Gene Knockdown Techniques , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...