Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 127(16): 164302, 2007 Oct 28.
Article in English | MEDLINE | ID: mdl-17979333

ABSTRACT

Guided by theoretical predictions, the rotational spectra of the mono- and bideuterated species of bromofluoromethane, CDH(79)BrF, CDH(81)BrF, CD(2) (79)BrF, and CD(2) (81)BrF, have been recorded for the first time. Assignment of a few hundred rotational transitions led to the accurate determination of the ground-state rotational constants, all of the quartic and most of the sextic centrifugal distortion constants, as well as the full bromine quadrupole-coupling tensor for both (79)Br and (81)Br, in good agreement with corresponding theoretical predictions based on high-level coupled-cluster calculations. The rotational spectra of the (13)C containing species (13)CH(2) (79)BrF and (13)CH(2) (81)BrF have been observed in natural abundance and have been assigned, thus allowing the determination of the rotational and centrifugal distortion constants as well as the bromine quadrupole-coupling tensor. Furthermore, empirical equilibrium structures have been obtained within a least-squares fit procedure using the available experimental ground-state rotational constants for various isotopic species. Vibrational effects have been accounted for in the analysis using vibration-rotation interaction constants derived from anharmonic force fields computed at the second-order Moller-Plesset perturbation theory as well as coupled-cluster (CC) levels. The empirical equilibrium geometries obtained in this way agree well with the corresponding theoretical predictions obtained from CC calculations [at the CCSD(T) level] after extrapolation to the complete basis set limit and inclusion of core-valence correlation corrections and relativistic effects.

2.
J Chem Phys ; 127(4): 044106, 2007 Jul 28.
Article in English | MEDLINE | ID: mdl-17672680

ABSTRACT

An analytic scheme for the computation of scalar-relativistic corrections to nuclear forces is presented. Relativistic corrections are included via a perturbative treatment involving the mass-velocity and the one-electron and two-electron Darwin terms. Such a scheme requires mixed second derivatives of the nonrelativistic energy with respect to the relativistic perturbation and the nuclear coordinates and can be implemented using available second-derivative techniques. Our implementation for Hartree-Fock self-consistent field, second-order Moller-Plesset perturbation theory, as well as the coupled-cluster level is used to investigate the relativistic effects on the geometrical parameters and harmonic vibrational frequencies for a set of molecules containing light elements (HX, X=F, Cl, Br; H2X, X=O, S; HXY, X=O, S and Y=F, Cl, Br). The focus of our calculations is the basis-set dependence of the corresponding relativistic effects, additivity of electron correlation and relativistic effects, and the importance of core correlation on relativistic effects.

3.
J Chem Phys ; 125(6): 64108, 2006 Aug 14.
Article in English | MEDLINE | ID: mdl-16942274

ABSTRACT

The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cases and the latter when extremely high accuracy is required. For a test suite of molecules that have rather precisely known enthalpies of formation {as taken from the active thermochemical tables of Ruscic and co-workers [Lecture Notes in Computer Science, edited by M. Parashar (Springer, Berlin, 2002), Vol. 2536, pp. 25-38; J. Phys. Chem. A 108, 9979 (2004)]}, the largest deviations between theory and experiment are 0.52, -0.70, and 0.51 kJ mol(-1) for the latter three methods, respectively. Some perspective is provided on this level of accuracy, and sources of remaining systematic deficiencies in the approaches are discussed.

4.
J Chem Phys ; 123(20): 204113, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16351246

ABSTRACT

Two-component quasirelativistic approaches are in principle capable of reproducing results from fully relativistic calculations based on the four-component Dirac equation (with fixed particle number). For one-electron systems, this also holds in practice, but in many-electron systems one has to transform the two-electron interaction, which is necessary because a picture change occurs when going from the Dirac equation to a two-component method. For one-electron properties, one can take full account of picture change in a manageable way, but for the electron interaction, this would spoil the computational advantages which are the main reason to perform quasirelativistic calculations. Exploiting those picture change effects are largest in the atomic cores, which in molecular applications do not differ too much from the cores of isolated neutral atoms, we propose an elegant, efficient, and accurate approximation to the two-electron picture change problem. The new approach, called the "model potential" approach because it makes use of atomic (four- and two-component) data to estimate picture change effects in molecules, shares with the nuclear-only approach that the Douglas-Kroll operator needs to be constructed only once (not in each self-consistent-field iteration) and that no time-consuming multicenter relativistic two-electron integrals need to be calculated. The new approach correctly describes the screening of both the nearest nucleus and distant nuclei, for the scalar-relativistic as well as the spin-orbit parts of the Hamiltonian. The approach is tested on atomic and molecular-orbital energies as well as spectroscopic constants of the lead dimer.

SELECTION OF CITATIONS
SEARCH DETAIL
...