Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 10(1): 38, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33612828

ABSTRACT

Plasmonic structures made of a semiconductor-insulator-metal hybrid provide efficient routes for second-harmonic and sum-frequency generation in sub-micrometer structures, which ultimately may boost on-chip integrated plasmonic circuits.

2.
Adv Mater ; 31(29): e1901033, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31131947

ABSTRACT

Nanometer-thick active metasurfaces (MSs) based on phase-change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response. For programmable MSs, however, the ability to selectively address and switch the PCM in individual meta-atoms is required. Here, simultaneous control of size, position, and crystallization depth of the switched phase-change material (PCM) volume within each meta-atom in a proof-of-principle MS consisting of a PCM-covered Al-nanorod antenna array is demonstrated. By modifying optical properties locally, amplitude and light phase can be programmed at the meta-atom scale. As this goes beyond previous effective medium concepts, it will enable small adaptive corrections to external aberrations and fabrication errors or multiple complex functionalities programmable on the same MS.

3.
Nano Lett ; 19(4): 2549-2554, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30920839

ABSTRACT

Mid-infrared (MIR) photonics demands highly confined optical fields to obtain efficient interaction between long-wavelength light and nanomaterials. Surface polaritons excited on polar semiconductor and metallic material interfaces exhibit near-fields localized on subwavelength scales. However, realizing a stronger field concentration in a cavity with a high quality ( Q) factor and a small mode volume is still challenging in the MIR region. This study reports MIR field concentration of surface phonon polaritons (SPhPs) using planar circular cavities with a high Q factor of ∼150. The cavities are fabricated on a thin film of the phase change material Ge3Sb2Te6 (GST) deposited on a silicon carbide (SiC) substrate. Scattering-type scanning near-field optical microscopy visualizes the near-field distribution on the samples and confirms directly that the SPhP field is strongly concentrated at the center of the centrosymmetric cavities. The smallest concentrated field size is 220 nm in diameter which corresponds to 1/50 of the wavelength of the incident light that is far below the diffraction limit. The thin GST film enhances the SPhP confinement, and it is used to switch the confinement off by tuning the cavity resonance induced by the phase change from the amorphous to the crystalline phase. This subwavelength and switchable field concentration within a high- Q polariton cavity has the potential to greatly enhance the light-matter interaction for molecular sensing and emission enhancement in MIR systems.

4.
Nat Mater ; 15(8): 870-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27213955

ABSTRACT

Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

5.
Opt Express ; 23(20): 25487-95, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26480066

ABSTRACT

We present a method for fabrication of large arrays of nano-antennas using extreme-ultraviolet (EUV) illumination. A discharge-produced plasma source generating EUV radiation around 10.88 nm wavelength is used for the illumination of a photoresist via a mask in a proximity printing setup. The method of metallic nanoantennas fabrication utilizes a bilayer photoresist and employs a lift-off process. The impact of Fresnel-diffraction of EUV light in the mask on a shape of the nanostructures has been investigated. It is shown how by the use of the same rectangular apertures in the transmission mask, antennas of various shapes can be fabricated. Using Fourier transform infrared spectroscopy, spectra of antennas reflectivity were measured and compared to FDTD simulations demonstrating good agreement.

6.
Adv Mater ; 27(31): 4597-603, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26173394

ABSTRACT

A switchable perfect absorber with multispectral thermal imaging capability is presented. Aluminum nanoantenna arrays above a germanium antimony telluride (GST) spacer layer and aluminum mirror provide efficient wavelength-tunable absorption in the mid-infrared. Utilizing the amorphous-to-crystalline phase transition in GST, this device offers switchable absorption with strong reflectance contrast at resonance and large phase-change-induced spectral shifts.

7.
Nano Lett ; 15(7): 4255-60, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26039735

ABSTRACT

Active control over the handedness of a chiral metamaterial has the potential to serve as key element for highly integrated polarization engineering approaches, polarization sensitive imaging devices, and stereo display technologies. However, this is hard to achieve as it seemingly involves the reconfiguration of the metamolecule from a left-handed into a right-handed enantiomer and vice versa. This type of mechanical actuation is intricate and usually neither monolithically realizable nor viable for high-speed applications. Here, enabled by the phase change material Ge3Sb2Te6 (GST-326), we demonstrate a tunable and switchable mid-infrared plasmonic chiral metamaterial in a proof-of-concept experiment. A large tunability range of the circular dichroism response from λ = 4.15 to 4.90 µm is achieved, and we experimentally demonstrate that the combination of a passive bias-type chiral layer with the active chiral metamaterial allows for switchable chirality, that is, the reversal of the circular dichroism sign, in a fully planar, layered design without the need for geometrical reconfiguration. Because phase change materials can be electrically and optically switched, our designs may open up a path for highly integrated mid-IR polarization engineering devices that can be modulated on ultrafast time scales.

8.
Nano Lett ; 13(8): 3470-5, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23742151

ABSTRACT

We show tuning of the resonance frequency of aluminum nanoantennas via variation of the refractive index n of a layer of phase-change material. Three configurations have been considered, namely, with the antennas on top of, inside, and below the layer. Phase-change materials offer a huge index change upon the structural transition from the amorphous to the crystalline state, both stable at room temperature. Since the imaginary part of their permittivity is negligibly small in the mid-infrared spectral range, resonance damping is avoided. We present resonance shifting to lower as well as to higher wavenumbers with a maximum shift of 19.3% and a tuning figure of merit, defined as the resonance shift divided by the full-width at half-maximum (FWHM) of the resonance peak, of 1.03.

SELECTION OF CITATIONS
SEARCH DETAIL
...