Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Syst Biol ; 71(3): 547-569, 2022 04 19.
Article in English | MEDLINE | ID: mdl-34329460

ABSTRACT

Reticulation, caused by hybridization and allopolyploidization, is considered an important and frequent phenomenon in the evolution of numerous plant lineages. Although both processes represent important driving forces of evolution, they are mostly ignored in phylogenetic studies involving a large number of species. Indeed only a scattering of methods exists to recover a comprehensive reticulated evolutionary history for a broad taxon sampling. Among these methods, comparisons of topologies obtained from plastid markers with those from a few nuclear sequences are favored, even though they restrict in-depth studies of hybridization and polyploidization. The genus Rosa encompasses c. 150 species widely distributed throughout the northern hemisphere and represents a challenging taxonomic group in which hybridization and polyploidization are prominent. Our main objective was to develop a general framework that would take patterns of reticulation into account in the study of the phylogenetic relationships among Rosa species. Using amplicon sequencing, we targeted allele variation in the nuclear genome as well as haploid sequences in the chloroplast genome. We successfully recovered robust plastid and nuclear phylogenies and performed in-depth tests for several scenarios of hybridization using a maximum pseudo-likelihood approach on taxon subsets. Our diploid-first approach followed by hybrid and polyploid grafting resolved most of the evolutionary relationships among Rosa subgenera, sections, and selected species. Based on these results, we provide new directions for a future revision of the infrageneric classification in Rosa. The stepwise strategy proposed here can be used to reconstruct the phylogenetic relationships of other challenging taxonomic groups with large numbers of hybrid and polyploid taxa. [Amplicon sequencing; interspecific hybridization; polyploid detection; reticulate evolution.].


Subject(s)
Rosa , Hybridization, Genetic , Likelihood Functions , Phylogeny , Polyploidy , Rosa/genetics
2.
Hortic Res ; 8(1): 76, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33790245

ABSTRACT

Blooming seasonality is an important trait in ornamental plants and was selected by humans. Wild roses flower only in spring whereas most cultivated modern roses can flower continuously. This trait is explained by a mutation of a floral repressor gene, RoKSN, a TFL1 homologue. In this work, we studied the origin, the diversity and the selection of the RoKSN gene. We analyzed 270 accessions, including wild and old cultivated Asian and European roses as well as modern roses. By sequencing the RoKSN gene, we proposed that the allele responsible for continuous-flowering, RoKSNcopia, originated from Chinese wild roses (Indicae section), with a recent insertion of the copia element. Old cultivated Asian roses with the RoKSNcopia allele were introduced in Europe, and the RoKSNcopia allele was progressively selected during the 19th and 20th centuries, leading to continuous-flowering modern roses. Furthermore, we detected a new allele, RoKSNA181, leading to a weak reblooming. This allele encodes a functional floral repressor and is responsible for a moderate accumulation of RoKSN transcripts. A transient selection of this RoKSNA181 allele was observed during the 19th century. Our work highlights the selection of different alleles at the RoKSN locus for recurrent blooming in rose.

3.
J Exp Bot ; 67(15): 4711-25, 2016 08.
Article in English | MEDLINE | ID: mdl-27406785

ABSTRACT

Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies.


Subject(s)
Plant Breeding/history , Rosa/genetics , Asia , Europe , France , Genotyping Techniques , History, 19th Century , History, 20th Century
4.
J Theor Biol ; 402: 75-88, 2016 08 07.
Article in English | MEDLINE | ID: mdl-27113781

ABSTRACT

In this paper, we develop a statistical methodology applied to the characterization of flowering curves using Gaussian mixture models. Our study relies on a set of rosebushes flowering data, and Gaussian mixture models are mainly used to quantify the reblooming properties of each one. In this regard, we also suggest our own selection criterion to take into account the lack of symmetry of most of the flowering curves. Three classes are created on the basis of a principal component analysis conducted on a set of reblooming indicators, and a subclassification is made using a longitudinal k-means algorithm which also highlights the role played by the precocity of the flowering. In this way, we obtain an overview of the correlations between the features we decided to retain on each curve. In particular, results suggest the lack of correlation between reblooming and flowering precocity. The pertinent indicators obtained in this study will be a first step towards the comprehension of the environmental and genetic control of these biological processes.


Subject(s)
Flowers/physiology , Models, Statistical , Normal Distribution , Rosa/physiology , Algorithms , Computer Simulation , Principal Component Analysis
5.
Mol Ther ; 18(10): 1814-21, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20628360

ABSTRACT

Retroviral vectors have been used to treat patients with the X-linked severe combined immunodeficiency disease and chronic granulomatous disease. In both cases, success has been undermined by clonal expansion of transduced cells in some patients due to insertional mutagenesis induced by random vector integration. This outcome underscores the importance of designing vectors for site-specific gene insertion to avoid unanticipated gene disruption or gene activation. In the present study, we incorporated the sequence-specific Cre protein into lentiviral virions. We demonstrated that the virion-associated Cre protein remained enzymatically active and was capable of directing site-specific insertion of a gene in the vector into a defined loxP site in the host genome. As there are loxP-like sequences throughout human genome that can be recognized by either wild-type Cre or Cre variants, our study demonstrates a new strategy of designing lentiviral-based vector for gene targeting.


Subject(s)
Genetic Vectors/genetics , Lentivirus/genetics , Transduction, Genetic/methods , Blotting, Southern , Cell Line, Tumor , Humans , Plasmids/genetics , Polymerase Chain Reaction
6.
Virology ; 362(2): 475-87, 2007 Jun 05.
Article in English | MEDLINE | ID: mdl-17292936

ABSTRACT

Replication of alphaviruses strongly depends on the promoters located in the plus- and minus-strands of virus-specific RNAs. The most sophisticated promoter is encoded by the 5' end of the viral genome. This RNA sequence is involved in the initiation of translation of viral nsPs, and synthesis of both minus- and plus-strands of the viral genome. Part of the promoter, the 51-nt conserved sequence element (CSE), is located in the nsP1-coding sequence, and this limits the spectrum of possible mutations that can be performed. We designed a recombinant Venezuelan equine encephalitis virus genome, in which the promoter and nsP1-coding sequences are separated. This modification has allowed us to perform a wide variety of genetic manipulations, without affecting the amino acid sequence of the nsPs, and to further investigate 51-nt CSE functioning. The results of this study suggest a direct interaction of the amino terminal domain of nsP2 with the 5' end of the viral genome.


Subject(s)
Conserved Sequence/genetics , Encephalitis Virus, Venezuelan Equine/growth & development , Encephalitis Virus, Venezuelan Equine/genetics , Promoter Regions, Genetic , Sequence Deletion , Virus Replication , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cricetinae , Culicidae , Humans , Mesocricetus , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Protein Binding , RNA, Viral/biosynthesis , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...