Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biol Open ; 5(11): 1735-1742, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27765755

ABSTRACT

Few vertebrates capture prey in both the aquatic and the terrestrial environment due to the conflicting biophysical demands of feeding in water versus air. The Atlantic mudskipper (Periophthalmus barbarus) is known to be proficient at feeding in the terrestrial environment and feeds predominately in this environment. Given the considerable forward flow of water observed during the mouth-opening phase to assist with feeding on land, the mudskipper must alter the function of its feeding system to feed successfully in water. Here, we quantify the aquatic prey-capture kinematics of the mudskipper and compare this with the previously described pattern of terrestrial feeding. Prior to feeding in the aquatic environment, the gill slits open, allowing water to be expelled through the gill slits. The opposite happens in terrestrial feeding during which the gill slits remain closed at this point. In water, the expansive movements of the head are larger, amounting to a larger volume increase and are initiated slightly later than in the terrestrial environment. This implies the generation of strong suction flows when feeding in water. Consequently, the kinematic patterns of the hydrodynamic tongue during terrestrial feeding and aquatic suction feeding are similar, except for the amplitude of the volume increase and the active closing of the gill slits early during the terrestrial feeding strike. The mudskipper thus exhibits the capacity to change the kinematics of its feeding apparatus to enable successful prey capture in two disparate environments.

2.
J Exp Biol ; 213(Pt 8): 1309-19, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20348343

ABSTRACT

The lateral line system detects water flow, which allows fish to orient their swimming with respect to hydrodynamic cues. However, it is unclear whether this sense plays a role in the control of propulsion. Hydrodynamic theory suggests that fish could reduce drag by coordinating the motion of the head relative to detected flow signals. To test this hypothesis, we performed measurements of undulatory kinematics during steady swimming in the golden shiner (Notemigonus crysoleucas) at three speeds (4.5, 11.0 and 22.0 cm s(-1)). We found that the phase shift between yaw angle and lateral velocity (20.5+/-13.1 deg., N=5) was significantly greater than the theoretical optimum (0 deg.) and the amplitude of these variables created a hydrodynamic index (H=0.05+/-0.03, N=6) that was less than an order of magnitude below the theoretical prediction. Furthermore, we repeated these measurements after pharmacologically ablating the lateral line hair cells and found that drag reduction was not adversely influenced by disabling the lateral line system. Therefore, flow sensing does not facilitate active drag reduction. However, we discovered that ablating the lateral line causes the envelope of lateral displacement to nearly double at the envelope's most narrow point for swimming at 4.5 cm s(-1). Therefore, fish may use hydrodynamic sensing to modulate the lateral amplitude of slow undulatory swimming, which could allow rapid responses to changes in environmental flow.


Subject(s)
Cyprinidae/physiology , Lateral Line System/physiology , Swimming/physiology , Animals , Behavior, Animal/physiology , Biomechanical Phenomena , Cyprinidae/anatomy & histology , Models, Biological , Rheology , Video Recording
3.
Rapid Commun Mass Spectrom ; 10(9): 1033-7, 1996.
Article in English | MEDLINE | ID: mdl-8755236

ABSTRACT

MK-0462 (rizatriptan) is a 5HT1D agonist being developed for the treatment of migraine. The assay for this substance in plasma and urine is based on HPLC with tandem mass spectrometry (MS/MS) detection. The procedure has been modified to include the simultaneous determination of the [triazole-13C2, 15N3-] stable-isotope-labelled analogue for which the lower quantifiable limit was 0.1 ng mL-1. The assay has been applied to study the pharmacokinetics of MK-0462 after simultaneous oral and intravenous administration of the drug and its stable-isotope-labelled analogue to dogs. The experiment afforded an estimate of plasma clearance concomitant with a precise measurement of the drug's oral bioavailability. The increasing use of LC-MS/MS in quantitative experiments may renew interest in stable isotopes as tools for pharmaceutical research.


Subject(s)
Serotonin Receptor Agonists/pharmacokinetics , Triazoles/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Calibration , Chromatography, High Pressure Liquid , Chromatography, Liquid , Dogs , Injections, Intravenous , Male , Mass Spectrometry , Triazoles/chemistry , Tryptamines
SELECTION OF CITATIONS
SEARCH DETAIL