Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 14(7): 2145-53, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18381956

ABSTRACT

PURPOSE: Irinotecan is a prodrug converted to the active cytotoxic molecule SN38 predominantly by the action of liver carboxylesterases. The efficacy of irinotecan is limited by this hepatic activation that results in a low conversion rate, high interpatient variability, and dose-limiting gastrointestinal toxicity. The purpose of this study was to evaluate a novel peptidic prodrug of SN38 (DTS-108) developed to bypass this hepatic activation and thus reduce the gastrointestinal toxicity and interpatient variability compared with irinotecan. EXPERIMENTAL DESIGN: SN38 was conjugated to a cationic peptide (Vectocell) via an esterase cleavable linker. The preclinical development plan consisted of toxicity and efficacy evaluation in a number of different models and species. RESULTS: The conjugate (DTS-108) is highly soluble, with a human plasma half-life of 400 minutes in vitro. Studies in the dog showed that DTS-108 liberates significantly higher levels of free SN38 than irinotecan without causing gastrointestinal toxicity. In addition, the ratio of the inactive SN38-glucuronide metabolite compared with the active SN38 metabolite is significantly lower following DTS-108 administration, compared with irinotecan, which is consistent with reduced hepatic metabolism. In vivo efficacy studies showed that DTS-108 has improved activity compared with irinotecan. A significant dose-dependent antitumoral efficacy was observed in all models tested and DTS-108 showed synergistic effects in combination with other clinically relevant therapeutic agents. CONCLUSIONS: DTS-108 is able to deliver significantly higher levels of SN38 than irinotecan, without the associated toxicity of irinotecan, resulting in an increased therapeutic window for DTS-108 in preclinical models. These encouraging data merit further preclinical and clinical investigation.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/analogs & derivatives , Drug Carriers , Neoplasms, Experimental/drug therapy , Peptides/chemistry , Peptides/chemical synthesis , Peptides/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Camptothecin/chemical synthesis , Camptothecin/chemistry , Camptothecin/metabolism , Camptothecin/pharmacology , Cations , Dogs , Humans , Irinotecan , Prodrugs/chemical synthesis , Prodrugs/metabolism , Xenograft Model Antitumor Assays
2.
J Med Chem ; 49(23): 6908-16, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17154520

ABSTRACT

Improvement in the therapeutic index of doxorubicin, a cytotoxic molecule, has been sought through its chemical conjugation to short (15-23 amino acid) peptide sequences called Vectocell peptides. Vectocell peptides are highly charged drug delivery peptides and display a number of characteristics that make them attractive candidates to minimize many of the limitations observed for a broad range of cytotoxic molecules. The studies reported here characterized the in vitro and in vivo efficacy of a range of Vectocell peptides conjugated to doxorubicin through different linkers. These studies show that the in vivo therapeutic index of doxorubicin can be improved by conjugation with a specific Vectocell peptide (DPV1047) through an ester linker to C14 of doxorubicin, in both colon and breast tumor models. This conjugate was also shown to have significant in vivo antitumoral activity in a model resistant to doxorubicin, suggesting that this conjugate is able to circumvent the multidrug resistance (MDR) phenotype. These experiments therefore provide support for the use of the Vectocell technology with other cytotoxic agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Doxorubicin/chemistry , Peptides/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Humans , Mice , Neoplasm Transplantation , Structure-Activity Relationship , Transplantation, Heterologous
3.
Biochem J ; 390(Pt 2): 407-18, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-15859953

ABSTRACT

Short peptide sequences that are able to transport molecules across the cell membrane have been developed as tools for intracellular delivery of therapeutic molecules. This work describes a novel family of cell-penetrating peptides named Vectocell peptides [also termed DPVs (Diatos peptide vectors)]. These peptides, originating from human heparin binding proteins and/or anti-DNA antibodies, once conjugated to a therapeutic molecule, can deliver the molecule to either the cytoplasm or the nucleus of mammalian cells. Vectocell peptides can drive intracellular delivery of molecules of varying molecular mass, including full-length active immunoglobulins, with efficiency often greater than that of the well-characterized cell-penetrating peptide Tat. The internalization of Vectocell peptides has been demonstrated to occur in both adherent and suspension cell lines as well as in primary cells through an energy-dependent endocytosis process, involving cell-membrane lipid rafts. This endocytosis occurs after binding of the cell-penetrating peptides to extracellular heparan sulphate proteoglycans, except for one particular peptide (DPV1047) that partially originates from an anti-DNA antibody and is internalized in a caveolar independent manner. These new therapeutic tools are currently being developed for intracellular delivery of a number of active molecules and their potentiality for in vivo transduction investigated.


Subject(s)
Cell Membrane/metabolism , Drug Carriers/metabolism , Peptides/metabolism , Amino Acid Sequence , Animals , Attachment Sites, Microbiological/genetics , Cell Line , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Cytosol/chemistry , Cytosol/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Carriers/toxicity , Humans , Integrases/metabolism , Kinetics , Molecular Sequence Data , Peptides/chemistry , Peptides/pharmacology , Peptides/toxicity , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombination, Genetic/genetics , Temperature , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...