Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
2.
Eur J Neurosci ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802069

ABSTRACT

Circadian clock function declines with ageing, which can aggravate ageing-related diseases such as type 2 diabetes and neurodegenerative disorders. Understanding age-related changes in the circadian system at a systemic level can contribute to the development of strategies to promote healthy ageing. The goal of this study was to investigate the impact of ageing on 24-h rhythms in amine metabolites across four tissues in young (2 months of age) and old (22-25 months of age) mice using a targeted metabolomics approach. Liver, plasma, the suprachiasmatic nucleus (SCN; the location of the central circadian clock in the hypothalamus) and the paraventricular nucleus (PVN; a downstream target of the SCN) were collected from young and old mice every 4 h during a 24-h period (n = 6-7 mice per group). Differential rhythmicity analysis revealed that ageing impacts 24-h rhythms in the amine metabolome in a tissue-specific manner. Most profound changes were observed in the liver, in which rhythmicity was lost in 60% of the metabolites in aged mice. Furthermore, we found strong correlations in metabolite levels between the liver and plasma and between the SCN and the PVN in young mice. These correlations were almost completely abolished in old mice. These results indicate that ageing is accompanied by a severe loss of the circadian coordination between tissues and by disturbed rhythmicity of metabolic processes. The tissue-specific impact of ageing may help to differentiate mechanisms of ageing-related disorders in the brain versus peripheral tissues and thereby contribute to the development of potential therapies for these disorders.

3.
FASEB J ; 38(1): e23348, 2024 01.
Article in English | MEDLINE | ID: mdl-38084798

ABSTRACT

A robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases. Strengthening clock function would therefore be an effective strategy to improve health. A high-throughput chemical screening has identified clock-enhancing molecule 3 (CEM3) as small molecule that increases circadian rhythm amplitude in cell lines and SCN explants. It is, however, currently not known whether CEM3 acts by enhancing the amplitude of individual single-cell oscillators or by enhancing synchrony among neurons. In view of CEM3's potential, it is of evident importance to clarify the mode of action of CEM3. Here, we investigated the effects of CEM3 on single-cell PERIOD2::LUCIFERASE rhythms in mouse SCN explants. CEM3 increased the amplitude in approximately 80%-90% of the individual cells in the SCN without disrupting the phase and/or period of their rhythms. Noticeably, CEM3's effect on amplitude is independent of the cell's initial amplitude. These findings make CEM3 a potential therapeutic candidate to restore compromised amplitude in circadian rhythms and will boost the development of other molecular approaches to improve health.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice , Animals , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/physiology , Circadian Clocks/physiology , Luciferases/metabolism , Neurons/metabolism
4.
Brain Behav Immun ; 115: 588-599, 2024 01.
Article in English | MEDLINE | ID: mdl-37984623

ABSTRACT

BACKGROUND: Cancer survivors can experience long lasting fatigue resulting in a lower quality of life. How chemotherapy treatment contributes to this fatigue is poorly understood. Previously we have shown in a mouse model of cancer related fatigue that doxorubicin treatment induces fatigue-like symptoms related to disturbed circadian rhythms. However, the specific components of the circadian regulatory circuitry affected by doxorubicin treatment remained unclear. Therefore we investigated the role of the central circadian clock, the suprachiasmatic nucleus (SCN), in chemotherapy-induced fatigue. METHODS: We measured circadian controlled behavior and multiunit neuronal activity in the SCN in freely moving mice exhibiting fatigue-like behavior after doxorubicin treatment under both light-dark (LD) and constant dark (DD) conditions. Additionally, we assessed the expression of inflammation related genes in spleen and kidney as potential inducers of CRF. RESULTS: Doxorubicin treatment significantly reduced both the running wheel activity and time spent using the running wheel for over five weeks after treatment. In contrast to the pronounced effects on behavior and neuronal activity of doxorubicin on circadian rhythms, peripheral inflammation markers only showed minor differences, five weeks after the last treatment. Surprisingly, the circadian SCN neuronal activity under both LD and DD conditions was not affected. However, the circadian timing of neuronal activity in peri-SCN areas (the brain areas surrounding SCN) and circadian rest-activity behavior was strongly affected by doxorubicin, suggesting that the output of the SCN was altered. The reduced correlation between the SCN neuronal activity and behavioral activity after doxorubicin treatment, suggests that the information flow from the SCN to the periphery was disturbed. CONCLUSION: Our preclinical study suggests that chemotherapy-induced fatigue disrupts the circadian rhythms in peripheral brain areas and behavior downstream from the SCN, potentially leading to fatigue like symptoms. Our data suggest that peripheral inflammation responses are less important for the maintenance of fatigue. Chronotherapy that realigns circadian rhythms could represent a non-invasive way to improve patient outcomes following chemotherapy.


Subject(s)
Antineoplastic Agents , Circadian Clocks , Mice , Humans , Animals , Quality of Life , Circadian Rhythm/physiology , Inflammation , Doxorubicin , Antineoplastic Agents/adverse effects
5.
Article in English | MEDLINE | ID: mdl-37947808

ABSTRACT

Adaptation of physiology and behavior to seasonal changes in the environment are for many organisms essential for survival. Most of our knowledge about the underlying mechanisms comes from research on photoperiodic regulation of reproduction in plants, insects and mammals. However, even humans, who mostly live in environments with minimal seasonal influences, show annual rhythms in physiology (e.g., immune activity, brain function), behavior (e.g., sleep-wake cycles) and disease prevalence (e.g., infectious diseases). As seasonal variations in environmental conditions may be drastically altered due to climate change, the understanding of the mechanisms underlying seasonal adaptation of physiology and behavior becomes even more relevant. While many species have developed specific solutions for dedicated tasks of photoperiodic regulation, we find a number of common principles and mechanisms when comparing insect and mammalian systems: (1) the circadian system contributes to photoperiodic regulation; (2) similar signaling molecules (VIP and PDF) are used for transferring information from the circadian system to the neuroendocrine system controlling the photoperiodic response; (3) the hormone melatonin participates in seasonal adaptation in insects as well as mammals; and (4) changes in photoperiod affect neurotransmitter function in both animal groups. The few examples of overlap elaborated in this perspective article, as well as the discussion on relevance for humans, should be seen as encouragement to unravel the machinery of seasonal adaptation in a multitude of organisms.

6.
Front Neurosci ; 17: 1178457, 2023.
Article in English | MEDLINE | ID: mdl-37260848

ABSTRACT

Introduction: Aging impairs the function of the central circadian clock in mammals, the suprachiasmatic nucleus (SCN), leading to a reduction in the output signal. The weaker timing signal from the SCN results in a decline in rhythm strength in many physiological functions, including sleep-wake patterns. Accumulating evidence suggests that the reduced amplitude of the SCN signal is caused by a decreased synchrony among the SCN neurons. The present study was aimed to investigate the hypothesis that the excitation/inhibition (E/I) balance plays a role in synchronization within the network. Methods: Using calcium (Ca2+) imaging, the polarity of Ca2+ transients in response to GABA stimulation in SCN slices of old mice (20-24 months) and young controls was studied. Results: We found that the amount of GABAergic excitation was increased, and that concordantly the E/I balance was higher in SCN slices of old mice when compared to young controls. Moreover, we showed an effect of aging on the baseline intracellular Ca2+ concentration, with higher Ca2+ levels in SCN neurons of old mice, indicating an alteration in Ca2+ homeostasis in the aged SCN. We conclude that the change in GABAergic function, and possibly the Ca2+ homeostasis, in SCN neurons may contribute to the altered synchrony within the aged SCN network.

7.
J Biol Rhythms ; 38(5): 461-475, 2023 10.
Article in English | MEDLINE | ID: mdl-37329153

ABSTRACT

The mammalian circadian clock is located in the suprachiasmatic nucleus (SCN) and consists of a network of coupled neurons, which are entrained to the environmental light-dark cycle. The phase coherence of the neurons is plastic and driven by the duration of daylight. With aging, the capacity to behaviorally adapt to seasonal changes in photoperiod reduces. The mechanisms underlying photoperiodic adaptation are largely unknown, but are important to unravel for the development of novel interventions to improve the quality of life of the elderly. We analyzed the phase coherence of single-cell PERIOD2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN of young and old mice entrained to either long or short photoperiod. The phase coherence was used as input to a 2-community noisy Kuramoto model to estimate the coupling strength between and within neuronal subpopulations. The model revealed a correlation between coupling strength and photoperiod-induced changes in the phase relationship among neurons, suggesting a functional link. We found that the SCN of young mice adapts in coupling strength over a large range, with weak coupling in long photoperiod (LP) and strong coupling in short photoperiod (SP). In aged mice, we also found weak coupling in LP, but a reduced capacity to reach strong coupling in SP. The inability to respond with an increase in coupling strength suggests that manipulation of photoperiod is not a suitable strategy to enhance clock function with aging. We conclude that the inability of aged mice to reach strong coupling contributes to deficits in behavioral adaptation to seasonal changes in photoperiod.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice , Animals , Circadian Rhythm/physiology , Quality of Life , Suprachiasmatic Nucleus/physiology , Photoperiod , Circadian Clocks/physiology , Mammals
8.
FASEB J ; 36(10): e22518, 2022 10.
Article in English | MEDLINE | ID: mdl-36057093

ABSTRACT

Our daily 24-h rhythm is synchronized to the external light-dark cycle resulting from the Earth's daily rotation. In the mammalian brain, the suprachiasmatic nucleus (SCN) serves as the master clock and receives light-mediated input via the retinohypothalamic tract. Abrupt changes in the timing of the light-dark cycle (e.g., due to jet lag) cause a phase shift in the circadian rhythms in the SCN. Here, we investigated the effects of a 6-h delay in the light-dark cycle on PERIOD2::LUCIFERASE expression at the single-cell level in mouse SCN organotypic explants. The ensemble pattern in phase shift response obtained from individual neurons in the anterior and central SCN revealed a bimodal distribution; specifically, neurons in the ventrolateral SCN responded with a rapid phase shift, while neurons in the dorsal SCN generally did not respond to the shift in the light-dark cycle. We also stimulated the hypothalamic tract in acute SCN slices to simulate light-mediated input to the SCN; interestingly, we found similarities between the distribution and fraction of rapid shifting neurons (in response to the delay) and neurons that were excited in response to electrical stimulation. These results suggest that a subpopulation of neurons in the ventral SCN that have an excitatory response to light input, shift their clock more readily than dorsal located neurons, and initiate the SCN's entrainment to the new light-dark cycle. Thus, we propose that light-excited neurons in the anterior and central SCN play an important role in the organism's ability to adjust to changes in the external light-dark cycle.


Subject(s)
Photoperiod , Suprachiasmatic Nucleus , Animals , Circadian Rhythm/physiology , Light , Luciferases/metabolism , Mammals/metabolism , Mice , Neurons/metabolism , Suprachiasmatic Nucleus/physiology
9.
FASEB J ; 36(8): e22415, 2022 08.
Article in English | MEDLINE | ID: mdl-35867045

ABSTRACT

In both diurnal and nocturnal mammals, the timing of activity is regulated by the central circadian clock of the suprachiasmatic nucleus (SCN). The SCN is synchronized to the external light cycle via the retinohypothalamic tract (RHT). To investigate potential differences in light processing between nocturnal mice and the diurnal rodent Rhabdomys pumilio, we mimicked retinal input by stimulation of the RHT ex vivo. Using Ca2+ imaging, we observed excitations as well as inhibitions of SCN neurons in response to electrical RHT stimulation. In mice, the vast majority of responses were excitatory (85%), whereas in Rhabdomys, the proportion of excitatory and inhibitory responses was similar (51% excitatory, 49% inhibitory). Glutamate blockers AP5 and CNQX blocked the excitatory responses to RHT stimulation but did not abolish the inhibitory responses in mice or Rhabdomys, indicating that the inhibitions were monosynaptically transmitted via the RHT. Simultaneous application of glutamate blockers with the GABAA antagonist gabazine blocked all inhibitory responses in mice, but not in Rhabdomys. Collectively, our results indicate that in Rhabdomys, considerably more inhibitory responses to light are present and that these responses are driven directly by the RHT. We propose that this increased proportion of inhibitory input could reflect a difference in the entrainment mechanism employed by diurnal rodents.


Subject(s)
Circadian Clocks , Animals , Circadian Rhythm/physiology , Glutamates , Mice , Retina/physiology , Rodentia , Suprachiasmatic Nucleus/physiology
10.
Cancers (Basel) ; 14(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35626030

ABSTRACT

Cancer-related fatigue (CRF) is the most devastating long-term side effect of many cancer survivors that confounds the quality of life for months to years after treatment. However, the cause of CRF is poorly understood. As a result, cancer survivors, at best, receive psychological support. Chemotherapy has been shown to increase the risk of CRF. Here, we study therapy-induced fatigue in a non-tumor-bearing mouse model with three different topoisomerase II-poisoning cancer drugs. These drugs either induce DNA damage and/or chromatin damage. Shortly before and several weeks after treatment, running wheel activity and electroencephalographic sleep were recorded. We show that doxorubicin, combining DNA damage with chromatin damage, unlike aclarubicin or etoposide, induces sustained CRF in this model. Surprisingly, this was not related to changes in sleep. In contrast, our data indicate that the therapy-induced CRF is associated with a disrupted circadian clock. The data suggest that CRF is probably a circadian clock disorder that influences the quality of waking and that the development of CRF depends on the type of chemotherapy provided. These findings could have implications for selecting and improving chemotherapy for the treatment of cancer in order to prevent the development of CRF.

11.
Sci Rep ; 11(1): 5932, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723320

ABSTRACT

Lipid metabolism is under the control of the circadian system and circadian dysregulation has been linked to obesity and dyslipidemia. These factors and outcomes have also been associated to, or affected by, the process of aging. Here, we investigated whether murine white (WAT) and brown (BAT) adipose tissue lipids exhibit rhythmicity and if this is affected by aging. To this end, we have measured the 24 h lipid profiles of WAT and BAT using a global lipidomics analysis of > 1100 lipids. We observed rhythmicity in nearly all lipid classes including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. Overall, ~ 22% of the analyzed lipids were considered rhythmic in WAT and BAT. Despite a general accumulation of lipids upon aging the fraction of oscillating lipids decreased in both tissues to 14% and 18%, respectively. Diurnal profiles of lipids in BAT appeared to depend on the lipid acyl chain length and this specific regulation was lost in aged mice. Our study revealed how aging affects the rhythmicity of lipid metabolism and could contribute to the quest for targets that improve diurnal lipid homeostasis to maintain cardiometabolic health during aging.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Aging/metabolism , Lipid Metabolism , Age Factors , Animals , Biomarkers , Chromatography, High Pressure Liquid , Computational Biology/methods , Lipidomics/methods , Male , Mass Spectrometry , Mice
12.
J Neurochem ; 157(1): 73-94, 2021 04.
Article in English | MEDLINE | ID: mdl-33370457

ABSTRACT

The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.


Subject(s)
Aging , Circadian Clocks/physiology , Circadian Rhythm/physiology , Hypothalamus/physiology , Suprachiasmatic Nucleus/physiology , Animals , Humans , Neurons
13.
Methods Mol Biol ; 2130: 303-324, 2021.
Article in English | MEDLINE | ID: mdl-33284454

ABSTRACT

In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a bilaterally paired structure in the hypothalamus known as the suprachiasmatic nucleus (SCN). Understanding the mammalian circadian system will require a detailed multilevel analysis of neural SCN circuits ex vivo and in vivo. Many of the techniques and approaches that are used for the analysis of the circuitry driving circadian oscillations in the SCN are similar to those employed in other brain regions. There is, however, one fundamental difference that needs to be taken into consideration, that is, the physiological, cell, and molecular properties of SCN neurons vary with the time of day. In this chapter, we will consider the preparations and electrophysiological techniques that we have used to analyze the SCN circuit focusing on the acute brain slice and intact, freely moving animal.


Subject(s)
Circadian Rhythm , Electroencephalography/methods , Patch-Clamp Techniques/methods , Suprachiasmatic Nucleus/physiology , Animals , Calcium Signaling , Electroencephalography/instrumentation , Evoked Potentials , Mice , Microelectrodes , Patch-Clamp Techniques/instrumentation , Suprachiasmatic Nucleus/metabolism
14.
FASEB J ; 34(10): 13685-13695, 2020 10.
Article in English | MEDLINE | ID: mdl-32869393

ABSTRACT

The central circadian pacemaker in mammals, the suprachiasmatic nucleus (SCN), is important for daily as well as seasonal rhythms. The SCN encodes seasonal changes in day length by adjusting phase distribution among oscillating neurons thereby shaping the output signal used for adaptation of physiology and behavior. It is well-established that brief light exposure at the beginning and end of the day, also referred to as "skeleton" light pulses, are sufficient to evoke the seasonal behavioral phenotype. However, the effect of skeleton light exposure on SCN network reorganization remains unknown. Therefore, we exposed mice to brief morning and evening light pulses that mark the time of dawn and dusk in a short winter- or a long summer day. Single-cell PER2::LUC recordings, electrophysiological recordings of SCN activity, and measurements of GABA response polarity revealed that skeleton light-regimes affected the SCN network to the same degree as full photoperiod. These results indicate the powerful, yet potentially harmful effects of even relatively short light exposures during the evening or night for nocturnal animals.


Subject(s)
Circadian Rhythm , Suprachiasmatic Nucleus/physiology , Animals , Evoked Potentials , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Photoperiod , Suprachiasmatic Nucleus/cytology , gamma-Aminobutyric Acid/metabolism
15.
J Biol Rhythms ; 35(2): 167-179, 2020 04.
Article in English | MEDLINE | ID: mdl-31983261

ABSTRACT

Aging impairs circadian clock function, leading to disrupted sleep-wake patterns and a reduced capability to adapt to changes in environmental light conditions. This makes shift work or the changing of time zones challenging for the elderly and, importantly, is associated with the development of age-related diseases. However, it is unclear what levels of the clock machinery are affected by aging, which is relevant for the development of targeted interventions. We found that naturally aged mice of >24 months had a reduced rhythm amplitude in behavior compared with young controls (3-6 months). Moreover, the old animals had a strongly reduced ability to adapt to short photoperiods. Recording PER2::LUC protein expression in the suprachiasmatic nucleus revealed no impairment of the rhythms in PER2 protein under the 3 different photoperiods tested (LD: 8:16, 12:12, and 16:8). Thus, we observed a discrepancy between the behavioral phenotype and the molecular clock, and we conclude that the aging-related deficits emerge downstream of the core molecular clock. Since it is known that aging affects several intracellular and membrane components of the central clock cells, it is likely that an impairment of the interaction between the molecular clock and these components is contributing to the deficits in photoperiod adaptation.


Subject(s)
Adaptation, Physiological/radiation effects , Aging , Circadian Clocks/genetics , Light , Photoperiod , Adaptation, Physiological/genetics , Animals , Circadian Clocks/physiology , Circadian Clocks/radiation effects , Circadian Rhythm/genetics , Circadian Rhythm/radiation effects , Male , Mice , Period Circadian Proteins/genetics , Transcription Factors
16.
Eur J Neurosci ; 51(1): 482-493, 2020 01.
Article in English | MEDLINE | ID: mdl-30793396

ABSTRACT

In mammals, the central pacemaker that coordinates 24-hr rhythms is located in the suprachiasmatic nucleus (SCN). Individual neurons of the SCN have a molecular basis for rhythm generation and hence, they function as cell autonomous oscillators. Communication and synchronization among these neurons are crucial for obtaining a coherent rhythm at the population level, that can serve as a pace making signal for brain and body. Hence, the ability of single SCN neurons to produce circadian rhythms is equally important as the ability of these neurons to synchronize one another, to obtain a bona fide pacemaker at the SCN tissue level. In this chapter we will discuss the mechanisms underlying synchronization, and plasticity herein, which allows adaptation to changes in day length. Furthermore, we will discuss deterioration in synchronization among SCN neurons in aging, and gain in synchronization by voluntary physical activity or exercise.


Subject(s)
Pacemaker, Artificial , Suprachiasmatic Nucleus , Animals , Brain , Circadian Rhythm , Humans , Neurons
18.
PLoS Comput Biol ; 15(5): e1006934, 2019 05.
Article in English | MEDLINE | ID: mdl-31042698

ABSTRACT

Neural systems are organized in a modular way, serving multiple functionalities. This multiplicity requires that both positive (e.g. excitatory, phase-coherent) and negative (e.g. inhibitory, phase-opposing) interactions take place across brain modules. Unfortunately, most methods to detect modules from time series either neglect or convert to positive, any measured negative correlation. This may leave a significant part of the sign-dependent functional structure undetected. Here we present a novel method, based on random matrix theory, for the identification of sign-dependent modules in the brain. Our method filters out both local (unit-specific) noise and global (system-wide) dependencies that typically obfuscate the presence of such structure. The method is guaranteed to identify an optimally contrasted functional 'signature', i.e. a partition into modules that are positively correlated internally and negatively correlated across. The method is purely data-driven, does not use any arbitrary threshold or network projection, and outputs only statistically significant structure. In measurements of neuronal gene expression in the biological clock of mice, the method systematically uncovers two otherwise undetectable, negatively correlated modules whose relative size and mutual interaction strength are found to depend on photoperiod.


Subject(s)
Circadian Clocks/genetics , Computational Biology/methods , Algorithms , Animals , Brain/physiology , Gene Expression/genetics , Gene Knock-In Techniques , Gene Regulatory Networks/genetics , Male , Mice , Neurons/physiology , Probability Theory
19.
Eur J Prev Cardiol ; 26(5): 522-530, 2019 03.
Article in English | MEDLINE | ID: mdl-29911893

ABSTRACT

BACKGROUND: Long-term risk factor control after myocardial infarction (MI) is currently inadequate and there is an unmet need for effective secondary prevention programmes. DESIGN AND METHODS: It was the aim of the study to compare a 12-month intensive prevention programme (IPP), coordinated by prevention assistants and including education sessions, telephone visits and telemetric risk factor control, with usual care after MI. Three hundred and ten patients were randomized to IPP vs. usual care one month after hospital discharge for MI in two German heart centres. Primary study endpoint was the IPP Prevention Score (0-15 points) quantifying global risk factor control. RESULTS: Global risk factor control was strongly improved directly after MI before the beginning of the randomized study (30% increase IPP Prevention Score). During the 12-month course of the randomized trial the IPP Prevention Score was improved by a further 14.3% in the IPP group ( p < 0.001), while it decreased by 11.8% in the usual care group ( p < 0.001). IPP significantly reduced smoking, low-density lipoprotein cholesterol, systolic blood pressure and physical inactivity compared with usual care ( p < 0.05). Step counters with online documentation were used by the majority of patients (80%). Quality of life was significantly improved by IPP ( p < 0.05). The composite endpoint of adverse clinical events was slightly lower in the IPP group during 12 months (13.8% vs. 18.9%, p = 0.25). CONCLUSIONS: A novel intensive prevention programme after MI, coordinated by prevention assistants and using personal teachings and telemetric strategies for 12 months, was significantly superior to usual care in providing sustainable risk factor control and better quality of life.


Subject(s)
Non-ST Elevated Myocardial Infarction/therapy , ST Elevation Myocardial Infarction/therapy , Secondary Prevention , Aged , Female , Germany , Humans , Male , Middle Aged , Non-ST Elevated Myocardial Infarction/diagnosis , Patient Care Team , Patient Education as Topic , Recurrence , Risk Assessment , Risk Factors , ST Elevation Myocardial Infarction/diagnosis , Telemetry , Time Factors , Treatment Outcome
20.
Metabolomics ; 14(10): 122, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30830420

ABSTRACT

INTRODUCTION: Most organisms display circadian rhythms in physiology and behaviour. In mammals, these rhythms are orchestrated by the suprachiasmatic nucleus (SCN). Recently, several metabolites have emerged as important regulators of circadian timekeeping. Metabolomics approaches have aided in identifying some key metabolites in circadian processes in peripheral tissue, but methods to routinely measure metabolites in small brain areas are currently lacking. OBJECTIVE: The aim of the study was to establish a reliable method for metabolite quantifications in the central circadian clock and relate them to different states of neuronal excitability. METHODS: We developed a method to collect and process small brain tissue samples (0.2 mm3), suitable for liquid chromatography-mass spectrometry. Metabolites were analysed in the SCN and one of its main hypothalamic targets, the paraventricular nucleus (PVN). Tissue samples were taken at peak (midday) and trough (midnight) of the endogenous rhythm in SCN electrical activity. Additionally, neuronal activity was altered pharmacologically. RESULTS: We found a minor effect of day/night fluctuations in electrical activity or silencing activity during the day. In contrast, increasing electrical activity during the night significantly upregulated many metabolites in SCN and PVN. CONCLUSION: Our method has shown to produce reliable and physiologically relevant metabolite data from small brain samples. Inducing electrical activity at night mimics the effect of a light pulses in the SCN, producing phase shifts of the circadian rhythm. The upregulation of metabolites could have a functional role in this process, since they are not solely products of physiological states, they are significant parts of cellular signalling pathways.


Subject(s)
Circadian Clocks , Metabolomics , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Electric Stimulation , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...