Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(45): e2303394, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37434080

ABSTRACT

Rechargeable batteries play an integral role toward carbon neutrality. Environmentally sustainable batteries should consider the trade-offs between material renewability, processability, thermo-mechanical and electrochemical performance, as well as transiency. To address this dilemma, we follow circular economy principles to fabricate fungal chitin nanofibril (ChNF) gel polymer electrolytes (GPEs) for zinc-ion batteries. These biocolloids are physically entangled into hierarchical hydrogels with specific surface areas of 49.5 m2 ·g-1 . Ionic conductivities of 54.1 mS·cm-1 and a Zn2+ transference number of 0.468 are reached, outperforming conventional non-renewable/non-biodegradable glass microfibre separator-liquid electrolyte pairs. Enabled by its mechanically elastic properties and large water uptake, a stable Zn electrodeposition in symmetric Zn|Zn configuration with a lifespan above 600 h at 9.5 mA·cm-2 is obtained. At 100 mA·g-1 , the discharge capacity of Zn/α-MnO2 full cells increases above 500 cycles when replacing glass microfiber separators with ChNF GPEs, while the rate performance remains comparable to glass microfiber separators. To make the battery completely transient, the metallic current collectors are replaced by biodegradable polyester/carbon black composites undergoing degradation in water at 70 °C. This work demonstrates the applicability of bio-based materials to fabricate green and electrochemically competitive batteries with potential applications in sustainable portable electronics, or biomedicine.

2.
J Mater Chem C Mater ; 9(27): 8640-8649, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34354835

ABSTRACT

We explore the interplay between ferroelectricity and metallicity, which are generally considered to be contra-indicated properties, in the prototypical ferroelectric barium titanate, BaTiO3. Using first-principles density functional theory, we calculate the effects of electron and hole doping, first by introducing a hypothetical background charge, and second through the introduction of explicit impurities (La, Nb and V for electron doping, and K, Al and Sc for hole doping). We find that, apart from a surprising increase in polarization at small hole concentrations, both charge-carrier types decrease the tendency towards ferroelectricity, with the strength of the polarization suppression, which is different for electrons and holes, determined by the detailed structure of the conduction and valence bands. Doping with impurity atoms increases the complexity and allows us to identify three factors that influence the ferroelectricity: structural effects arising largely from the size of the impurity ion, electronic effects from the introduction of charge carriers, and changes in unit-cell volume and shape. A competing balance between these contributions can result in an increase or decrease in ferroelectricity with doping.

SELECTION OF CITATIONS
SEARCH DETAIL
...