Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322674

ABSTRACT

Reputations are critical to human societies, as individuals are treated differently based on their social standing1,2. For instance, those who garner a good reputation by helping others are more likely to be rewarded by third parties3-5. Achieving widespread cooperation in this way requires that reputations accurately reflect behaviour6 and that individuals agree about each other's standings7. With few exceptions8-10, theoretical work has assumed that information is limited, which hinders consensus7,11 unless there are mechanisms to enforce agreement, such as empathy12, gossip13-15 or public institutions16. Such mechanisms face challenges in a world where empathy, effective communication and institutional trust are compromised17-19. However, information about others is now abundant and readily available, particularly through social media. Here we demonstrate that assigning private reputations by aggregating several observations of an individual can accurately capture behaviour, foster emergent agreement without enforcement mechanisms and maintain cooperation, provided individuals exhibit some tolerance for bad actions. This finding holds for both first- and second-order norms of judgement and is robust even when norms vary within a population. When the aggregation rule itself can evolve, selection indeed favours the use of several observations and tolerant judgements. Nonetheless, even when information is freely accessible, individuals do not typically evolve to use all of it. This method of assessing reputations-'look twice, forgive once', in a nutshell-is simple enough to have arisen early in human culture and powerful enough to persist as a fundamental component of social heuristics.

2.
PLoS Comput Biol ; 20(3): e1011862, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427626

ABSTRACT

Social reputations provide a powerful mechanism to stimulate human cooperation, but observing individual reputations can be cognitively costly. To ease this burden, people may rely on proxies such as stereotypes, or generalized reputations assigned to groups. Such stereotypes are less accurate than individual reputations, and so they could disrupt the positive feedback between altruistic behavior and social standing, undermining cooperation. How do stereotypes impact cooperation by indirect reciprocity? We develop a theoretical model of group-structured populations in which individuals are assigned either individual reputations based on their own actions or stereotyped reputations based on their groups' behavior. We find that using stereotypes can produce either more or less cooperation than using individual reputations, depending on how widely reputations are shared. Deleterious outcomes can arise when individuals adapt their propensity to stereotype. Stereotyping behavior can spread and can be difficult to displace, even when it compromises collective cooperation and even though it makes a population vulnerable to invasion by defectors. We discuss the implications of our results for the prevalence of stereotyping and for reputation-based cooperation in structured populations.


Subject(s)
Cooperative Behavior , Models, Psychological , Humans , Altruism , Mass Behavior
3.
Nat Ecol Evol ; 8(1): 22-31, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37974003

ABSTRACT

Previous studies suggested that microbial communities can harbour keystone species whose removal can cause a dramatic shift in microbiome structure and functioning. Yet, an efficient method to systematically identify keystone species in microbial communities is still lacking. Here we propose a data-driven keystone species identification (DKI) framework based on deep learning to resolve this challenge. Our key idea is to implicitly learn the assembly rules of microbial communities from a particular habitat by training a deep-learning model using microbiome samples collected from this habitat. The well-trained deep-learning model enables us to quantify the community-specific keystoneness of each species in any microbiome sample from this habitat by conducting a thought experiment on species removal. We systematically validated this DKI framework using synthetic data and applied DKI to analyse real data. We found that those taxa with high median keystoneness across different communities display strong community specificity. The presented DKI framework demonstrates the power of machine learning in tackling a fundamental problem in community ecology, paving the way for the data-driven management of complex microbial communities.


Subject(s)
Deep Learning , Microbiota , Machine Learning
4.
bioRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36993659

ABSTRACT

Previous studies suggested that microbial communities harbor keystone species whose removal can cause a dramatic shift in microbiome structure and functioning. Yet, an efficient method to systematically identify keystone species in microbial communities is still lacking. This is mainly due to our limited knowledge of microbial dynamics and the experimental and ethical difficulties of manipulating microbial communities. Here, we propose a Data-driven Keystone species Identification (DKI) framework based on deep learning to resolve this challenge. Our key idea is to implicitly learn the assembly rules of microbial communities from a particular habitat by training a deep learning model using microbiome samples collected from this habitat. The well-trained deep learning model enables us to quantify the community-specific keystoneness of each species in any microbiome sample from this habitat by conducting a thought experiment on species removal. We systematically validated this DKI framework using synthetic data generated from a classical population dynamics model in community ecology. We then applied DKI to analyze human gut, oral microbiome, soil, and coral microbiome data. We found that those taxa with high median keystoneness across different communities display strong community specificity, and many of them have been reported as keystone taxa in literature. The presented DKI framework demonstrates the power of machine learning in tackling a fundamental problem in community ecology, paving the way for the data-driven management of complex microbial communities.

5.
Imeta ; 1(1)2022 Mar.
Article in English | MEDLINE | ID: mdl-35757098

ABSTRACT

Microbes can form complex communities that perform critical functions in maintaining the integrity of their environment or their hosts' well-being. Rationally managing these microbial communities requires improving our ability to predict how different species assemblages affect the final species composition of the community. However, making such a prediction remains challenging because of our limited knowledge of the diverse physical, biochemical, and ecological processes governing microbial dynamics. To overcome this challenge, we present a deep learning framework that automatically learns the map between species assemblages and community compositions from training data only, without knowing any of the above processes. First, we systematically validate our framework using synthetic data generated by classical population dynamics models. Then, we apply our framework to data from in vitro and in vivo microbial communities, including ocean and soil microbiota, Drosophila melanogaster gut microbiota, and human gut and oral microbiota. We find that our framework learns to perform accurate out-of-sample predictions of complex community compositions from a small number of training samples. Our results demonstrate how deep learning can enable us to understand better and potentially manage complex microbial communities.

SELECTION OF CITATIONS
SEARCH DETAIL