Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 14(5): 1109-19, 2014 May.
Article in English | MEDLINE | ID: mdl-24612827

ABSTRACT

Xenogenic fetal neuroblasts are considered as a potential source of transplantable cells for the treatment of neurodegenerative diseases, but immunological barriers limit their use in the clinic. While considerable work has been performed to decipher the role of the cellular immune response in the rejection of intracerebral xenotransplants, there is much still to learn about the humoral reaction. To this end, the IgG response to the transplantation of fetal porcine neural cells (PNC) into the rat brain was analyzed. Rat sera did not contain preformed antibodies against PNC, but elicited anti-porcine IgG was clearly detected in the host blood once the graft was rejected. Only the IgG1 and IgG2a subclasses were up-regulated, suggesting a T-helper 2 immune response. The main target of these elicited IgG antibodies was porcine neurons, as determined by double labeling in vitro and in vivo. Complement and anti-porcine IgG were present in the rejecting grafts, suggesting an active role of the host humoral response in graft rejection. This hypothesis was confirmed by the prolonged survival of fetal porcine neurons in the striatum of immunoglobulin-deficient rats. These data suggest that the prolonged survival of intracerebral xenotransplants relies on the control of both cell-mediated and humoral immune responses.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Cerebral Cortex/immunology , Graft Rejection/immunology , Immunoglobulin G/immunology , Neurons/immunology , Transplantation, Heterologous , Animals , Antibodies, Anti-Idiotypic/pharmacology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/surgery , Flow Cytometry , Graft Rejection/metabolism , Graft Rejection/pathology , Graft Survival , Immunoenzyme Techniques , Neurons/cytology , Neurons/transplantation , Rats , Rats, Inbred Lew , Swine
2.
Methods Mol Biol ; 879: 147-64, 2012.
Article in English | MEDLINE | ID: mdl-22610559

ABSTRACT

Treatments for neurodegenerative diseases have little impact on the long-term patient health. However, cellular transplants of neuroblasts derived from the aborted embryonic brain tissue in animal models of neurodegenerative disorders and in patients have demonstrated survival and functionality in the brain. However, ethical and functional problems due to the use of this fetal tissue stopped most of the clinical trials. Therefore, new cell sources were needed, and scientists focused on neural (NSCs) and mesenchymal stem cells (MSCs). When transplanted in the brain of animals with Parkinson's or Huntington's disease, NSCs and MSCs were able to induce partial functional recovery by promoting neuroprotection and immunomodulation. MSCs are more readily accessible than NSCs due to sources such as the bone marrow. However, MSCs are not capable of differentiating into neurons in vivo where NSCs are. Thus, transplantation of NSCs and MSCs is interesting for brain regenerative medicine. In this chapter, we detail the methods for NSCs and MSCs isolation as well as the transplantation procedures used to treat rodent models of neurodegenerative damage.


Subject(s)
Mesenchymal Stem Cells/cytology , Neural Stem Cells/cytology , Neurodegenerative Diseases/therapy , Stem Cell Transplantation/methods , Animals , Cell Separation/methods , Cells, Cultured , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...