Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 103(4): e14525, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627214

ABSTRACT

An early exploration of the benzothiazole class against two kinetoplastid parasites, Leishmania infantum and Trypanosoma cruzi, has been performed after the identification of a benzothiazole derivative as a suitable antileishmanial initial hit. The first series of derivatives focused on the acyl fragment of its class, evaluating diverse linear and cyclic, alkyl and aromatic substituents, and identified two other potent compounds, the phenyl and cyclohexyl derivatives. Subsequently, new compounds were designed to assess the impact of the presence of diverse substituents on the benzothiazole ring or the replacement of the endocyclic sulfur by other heteroatoms. All compounds showed relatively low cytotoxicity, resulting in decent selectivity indexes for the most active compounds. Ultimately, the in vitro ADME properties of these compounds were assessed, revealing a satisfying water solubility, gastrointestinal permeability, despite their low metabolic stability and high lipophilicity. Consequently, compounds 5 and 6 were identified as promising hits for further hit-to-lead exploration within this benzothiazole class against L. infantum, thus providing promising starting points for the development of antileishmanial candidates.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Trypanosoma cruzi , Antiprotozoal Agents/pharmacology , Benzothiazoles/pharmacology
2.
Future Med Chem ; 16(3): 253-269, 2024 02.
Article in English | MEDLINE | ID: mdl-38193294

ABSTRACT

Background: Chagas disease is caused by the parasite Trypanosoma cruzi, and the lack of effective and safe treatments makes identifying new classes of compounds with anti-T. cruzi activity of paramount importance. Methods: Hit-to-lead exploration of a metabolically stable N-imidazoylpiperazine was performed. Results: Compound 2, a piperazine derivative active against T. cruzi, was selected to perform the hit-to-lead exploration, which involved the design, synthesis and biological evaluation of 39 new derivatives. Conclusion: Compounds 6e and 10a were identified as optimized compounds with low micromolar in vitro activity, low cytotoxicity and suitable preliminary absorption, distribution, metabolism and excretion and physicochemical properties. Both compounds reduced parasitemia in mouse models of Chagas disease, providing a promising opportunity for further exploration of new antichagasic compounds.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Animals , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Chagas Disease/drug therapy , Chagas Disease/parasitology , Structure-Activity Relationship , Parasitemia/drug therapy
3.
Eur J Med Chem ; 246: 114925, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36459758

ABSTRACT

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. Because current treatments present several limitations, including long duration, variable efficacy and serious side effects, there is an urgent need to explore new antitrypanosomal drugs. The present study describes the hit-to-lead optimization of a 2-aminobenzimidazole hit 1 identified through in vitro phenotypic screening of a chemical library against intracellular Trypanosoma cruzi amastigotes, which focused on optimizing potency, selectivity, microsomal stability and lipophilicity. Multiparametric Structure-Activity Relationships were investigated using a set of 277 derivatives. Although the physicochemical and biological properties of the initial hits were improved, a combination of low kinetic solubility and in vitro cytotoxicity against mammalian cells prevented progression of the best compounds to an efficacy study using a mouse model of Chagas disease.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Animals , Trypanocidal Agents/chemistry , Chagas Disease/drug therapy , Structure-Activity Relationship , Mammals
4.
Future Med Chem ; 13(24): 2167-2183, 2021 12.
Article in English | MEDLINE | ID: mdl-34708659

ABSTRACT

Background: Schiff bases are synthetically accessible compounds that have been used in medicinal chemistry. Methods & results: In this work, 27 Schiff bases derived from diaminomaleonitrile were synthesized in high yields (80-98%). Molecular docking studies suggested that the Schiff bases interact with the catalytic site of cruzain. The most active cruzain inhibitor, analog 13 (IC50 = 263 nM), was predicted to form an additional hydrophobic contact with Met68 in the binding site of the enzyme. A strong correlation between the IC50 values and ChemScore binding energies was observed (R = 0.99). Kernel-based 2D quantitative structure-activity relationship models for the whole dataset yielded sound correlation coefficients (R2 = 0.844; Q2 = 0.719). Conclusion: These novel and potent cruzain inhibitors are worthwhile starting points in further Chagas disease drug discovery programs.


Subject(s)
Chagas Disease/drug therapy , Diamines/pharmacology , Nitriles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Diamines/chemical synthesis , Diamines/chemistry , Molecular Docking Simulation , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Quantitative Structure-Activity Relationship , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
5.
PLoS Negl Trop Dis ; 15(2): e0009196, 2021 02.
Article in English | MEDLINE | ID: mdl-33617566

ABSTRACT

Leishmaniasis is a major infectious disease with hundreds of thousands of new cases and over 20,000 deaths each year. The current drugs to treat this life-threatening infection have several drawbacks such as toxicity and long treatment regimens. A library of 1.8 million compounds, from which the hits reported here are publicly available, was screened against Leishmania infantum as part of an optimization program; a compound was found with a 2-aminobenzimidazole functionality presenting moderate potency, low metabolic stability and high lipophilicity. Several rounds of synthesis were performed to incorporate chemical groups capable of reducing lipophilicity and clearance, leading to the identification of compounds that are active against different parasite strains and have improved in vitro properties. As a result of this optimization program, a group of compounds was further tested in anticipation of in vivo evaluation. In vivo tests were carried out with compounds 29 (L. infantum IC50: 4.1 µM) and 39 (L. infantum IC50: 0.5 µM) in an acute L. infantum VL mouse model, which showed problems of poor exposure and lack of efficacy, despite the good in vitro potency.


Subject(s)
Benzimidazoles/pharmacology , Drug Discovery , Leishmania infantum/drug effects , Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/pharmacology , Benzimidazoles/chemistry , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Microsomes, Liver
6.
Front Pharmacol ; 12: 774069, 2021.
Article in English | MEDLINE | ID: mdl-35069198

ABSTRACT

Cruzain, the main cysteine protease of Trypanosoma cruzi, plays key roles in all stages of the parasite's life cycle, including nutrition acquisition, differentiation, evasion of the host immune system, and invasion of host cells. Thus, inhibition of this validated target may lead to the development of novel drugs for the treatment of Chagas disease. In this study, a multiparameter optimization (MPO) approach, molecular modeling, and structure-activity relationships (SARs) were employed for the identification of new benzimidazole derivatives as potent competitive inhibitors of cruzain with trypanocidal activity and suitable pharmacokinetics. Extensive pharmacokinetic studies enabled the identification of metabolically stable and permeable compounds with high selectivity indices. CYP3A4 was found to be involved in the main metabolic pathway, and the identification of metabolic soft spots provided insights into molecular optimization. Compound 28, which showed a promising trade-off between pharmacodynamics and pharmacokinetics, caused no acute toxicity and reduced parasite burden both in vitro and in vivo.

7.
RSC Med Chem ; 11(11): 1267-1274, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-34085041

ABSTRACT

A series of benzene sulphonamides with good potency and selectivity against Leishmania spp. intracellular amastigotes was identified by high-throughput screening. Approximately 200 compounds were synthesized as part of a hit-to-lead optimization program. The potency of the series appears to be strongly dependent on lipophilicity, making the identification of suitable orally available candidates challenging due to poor pharmacokinetics. Despite not identifying a clinical candidate, a likely solvent exposed area was found, best exemplified in compound 29. Ongoing detailed mode-of-action studies may provide an opportunity to use target-based medicinal chemistry to overcome the issues with the current series.

8.
Biochim Biophys Acta ; 1703(1): 79-81, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15588705

ABSTRACT

Snake venom PLA(2)s have been extensively studied due to their role in mediating and disrupting physiological processes such as coagulation, platelet aggregation and myotoxicity. The Ca(2+) ion bound to the putative calcium-binding loop is essential for hydrolytic activity. We report the crystallization in the presence and absence of Ca(2+) and X-ray diffraction data collection at 1.60 angstroms (with Ca(2+)) and 1.36 angstroms (without Ca(2+)) of an Asp49 PLA(2) from Bothrops jararacussu venom. The crystals belong to orthorhombic space group C222(1). Initial refinement and electron density analysis indicate significant conformational changes upon Ca(2+) binding.


Subject(s)
Aspartic Acid/chemistry , Bothrops , Calcium/metabolism , Crotalid Venoms/chemistry , Phospholipases A/chemistry , Animals , Crotalid Venoms/enzymology , Crystallography, X-Ray , Group II Phospholipases A2 , Phospholipases A/isolation & purification , Phospholipases A/metabolism , Phospholipases A2 , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...