Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36836748

ABSTRACT

Among the many factors inducing prostate inflammation, bacterial contribution is potentially underrated according to the scientific community. Bacterial prostatitis is characterized by modifications of the prostatic microenvironment, mainly driven by the immune system. Macrophages play a major role in bacterial prostatitis, secreting a plethora of proinflammatory and chemoattractive cytokines and proteolytic enzymes able to degrade the ECM, so facilitating the invasion of other immune cells. Consequently, macrophages represent a link between bacterial infection and prostate inflammation, as well as being the main target of prostate anti-inflammatory drugs and dietary supplements. This study aims to investigate the effect of a formulation composed of active principles and a probiotic strain with a particular focus on the anti-inflammatory effect in an in vitro bacterial prostatitis model. The results obtained showed that the formulation reduces the inflammatory response of prostatic epithelium induced by bacterial infection. This effect is mediated by the modulation of activated macrophages. Analysis of the cytokines released highlights that the tested formulation is able to reduce the expression of key proinflammatory cytokines involved in the pathogenesis of prostate diseases, in particular prostate cancer, and represents a valuable tool to prevent bacterial prostatitis and ensure favorable prostate health.

2.
Sci Rep ; 12(1): 9702, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690598

ABSTRACT

The human skin microbiota plays a key role in the maintenance of healthy skin, ensuring protection and biological barrier by competing with pathogens and by closely communicating with the immune system. The development of approaches which preserve or restore the skin microbiota represents a novel target for skincare applications. Prebiotics could be applied to balance almost any microbial community to achieve advantageous effects. However, information about their effectiveness as skin microbiota modulators is limited. The objective of the current study was to evaluate the effects of short chain fructo-oligosaccharides (scFOS) from sugar beet (DP 3-5), well-recognised prebiotics, on some representative bacterial strains of the skin microbiota. We measured the growth and competitive activity of these specific bacteria for the use of scFOS as energy source in minimal medium and in a reconstructed human epithelium (RHE) in vitro model. In minimal growth medium, scFOS promoted and sustained the growth of Staphylococcus epidermidis up to 24 h, considered a beneficial skin commensal bacterium, while inhibiting both Cutibacterium acnes and Staphylococcus aureus growth, regarded as opportunistic pathogens. S. epidermidis showed the highest colonization potential and 1% scFOS was effective in shifting the competition in favour of S. epidermidis with respect to C. acnes in the RHE model. This latter effect was observed following 24 h of exposure, suggesting a long-term effect of scFOS in a highly skin dynamic environment. Therefore, scFOS could be effectively implemented in skincare formulations for recovering skin microbiota homeostasis.


Subject(s)
Microbiota , Prebiotics , Humans , Oligosaccharides/pharmacology , Prebiotics/analysis , Propionibacterium acnes , Skin , Staphylococcus epidermidis
3.
Metabolites ; 12(5)2022 May 21.
Article in English | MEDLINE | ID: mdl-35629967

ABSTRACT

Iron deficiency is one of the most prevalent nutritional disorders worldwide. The standard treatment involves iron supplementation, but this task is challenging because of poor solubility and organoleptic issues. Moreover, the need to increase iron bioavailability represents a challenge for treating iron-related disorders. In this study, gastroresistance and iron intestinal absorption of an innovative granular formulation composed of ferric pyrophosphate, modified starch and phospholipids branded as Ferro Fosfosoma® was investigated. Gastroresistant properties were studied using standard protocols, and a bioaccessible fraction was obtained by exposing a food supplement to in vitro digestion. This fraction was used for investigating iron absorption in Caco-2 and human follicle-associated intestinal epithelium (FAE) models. Ferro Fosfosoma® showed an improved resistance to gastric digestion and higher intestinal absorption than ferric pyrophosphate salt used as a control in both models. In the FAE model, Ferro Fosfosoma® induces larger iron absorption than in the Caco-2 monolayer, most likely due to the transcytosis ability of M cells. The larger iron absorption in the Ferro Fosfosoma®-treated FAE model corresponds to higher ferritin level, proving physiological iron handling that was once delivered by granular formulation. Finally, the formulation did not induce any alterations in viability and barrier integrity. To conclude, Ferro Fosfosoma® favors iron absorption and ferritin expression, while preserving any adverse effects.

4.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35453303

ABSTRACT

Cardiovascular diseases (CVDs) represent the leading cause of death worldwide, being responsible for about one third of deaths. Among CVDs, coronary artery diseases (CADs) are characterized by vascular endothelium dysfunction due to oxidative and inflammatory damages, the oxidation of circulating low-density lipoproteins (LDL) and high-density lipoproteins (HDL), and the production of ROS in the steatotic liver with the consequent increase of lipids and cholesterol. Together with CADs, heart failure (HF) represents another high-mortality rate CVD. A major risk factor for HF is hypertension that is accompanied by oxidative stress. Phytoextracts, rich in antioxidant and anti-inflammatory compounds, may have therapeutic value as they can interfere with several CVDs risk factors. In this work, a novel silver fir (Abies alba) bark extract, Abigenol®/AlbiPhenol®, was studied. First, Abigenol®/AlbiPhenol® cytotoxicity, bioaccessibility and bioavailability were evaluated by using an in vitro digestion model. Abigenol®/AlbiPhenol® was shown to be non-cytotoxic and showed good bioaccessibility. Then, by using in vitro hepatic, cardiac and vascular models, its antioxidant and anti-steatotic properties were assessed. Abigenol®/AlbiPhenol® showed an effective antioxidant action, and it was able to inhibit LDL and HDL oxidation, the main actors in atherosclerotic plaque formation. In steatotic conditions, Abigenol®/AlbiPhenol® induces decreased lipid and cholesterol accumulation in hepatocytes. In addition, in a cardiac model, the formulation reduced the activity of the hypertension-related angiotensin-converting enzyme (ACE). Altogether, these findings reveal a potential application of Abigenol®/AlbiPhenol® in the prevention and treatment of CVDs.

5.
Molecules ; 25(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348818

ABSTRACT

Iron is a fundament micronutrient, whose homeostasis is strictly regulated. Iron deficiency anemia is among the most widespread nutritional deficiencies and its therapy, based on dietary supplement and drugs, may lead to severe side effects. With the aim of improving iron bioavailability while reducing iron oral therapy side effects, novel dietary supplements based on innovative technologies-microencapsulation, liposomes, sucrosomes-have been produced and marketed. In the present work, six iron dietary supplements for different therapeutic targets were compared in terms of bioaccessibility, bioavailability, and safety by using an integrated in vitro approach. For general-purpose iron supplements, ME + VitC (microencapsulated) showed a fast, burst intestinal iron absorption kinetic, which maintained iron bioavailability and ferritin expression constant over time. SS + VitC (sucrosomes), on the other side, showed a slower, time-dependent iron absorption and ferritin expression trend. ME + Folate (microencapsulated) showed a behavior similar to that of ME + VitC, albeit with a lower bioavailability. Among pediatric iron supplements, a time-dependent bioavailability increase was observed for LS (liposome), while PIC (polydextrose-iron complex) bioavailability is severely limited by its poor bioaccessibility. Finally, except for SS + VitC, no adverse effects on intestinal mucosa vitality and barrier integrity were observed. Considering obtained results and the different therapeutic targets, microencapsulation-based formulations are endowed with better performance compared to the other formulations. Furthermore, performances of microencapsulated products were obtained with a lower iron daily dose, limiting the potential onset of side effects.


Subject(s)
Anemia, Iron-Deficiency/diet therapy , Dietary Supplements/analysis , Drug Compounding/methods , Ferritins/pharmacokinetics , Ferritins/therapeutic use , Intestinal Absorption/physiology , Biological Availability , Caco-2 Cells , Cell Line, Tumor , Drug Delivery Systems/methods , Humans , Micronutrients/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...