Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Niger J Nat Prod Med ; 12: 40-42, 2008.
Article in English | MEDLINE | ID: mdl-20119491

ABSTRACT

This study was to compare the total phenolic (TP) content in extracts from eleven plant materials collected at different geographical locations in Kenya, Nigeria, and USA. These plants have been selected because the majority of them are highly pigmented, from yellow to purple, and would therefore have economic value in industries for producing antioxidants and surfactants. Two of them were collected from the industrial and domestic waste outlets. Each analysis was achieved using the Folin-Ciocalteau technique. The order of decreasing phenolic acid content as gallic acid concentration (mg/g dry weight) was Prunus africana (55.14) > Acacia tortilis (42.11) > Khaya grandifoliola (17.54) > Curcuma longa (17.23) > Vernonia amygdalina (14.9)> Russelia equisetiformis (14.03) > Calendula officinalis (7.96) >Phragmites australis (control) (7.09) > Rauwolfia vomitoria (6.69) > Phragmites australis (industrial) (6.21) > Cnidoscolus aconitifolius (5.6). The TP contents of Spartina alterniflora species were below the detection limit.

2.
Cell Mol Biol (Noisy-le-grand) ; 53(3): 34-41, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17531147

ABSTRACT

The effects of Cnidoscolus aconitifolius (CA) leaf extract and chlorpropamide on blood glucose and insulin levels in the inbred type 2 diabetic mice are reported. After treatment with CA, the glucose levels were measured at 0 and 2-hour intervals in experimental groups and controls. Group I received no treatment and served as control; Group II was the reference and it received chlorpropamide; Groups I-III were moderately diabetic, 100-300 mg/dL blood glucose levels while Group IV were severely diabetic (> 300 mg/dL). Groups III and IV received CA and served as test groups. There was no significant difference between the blood glucose levels at 0 and 2 hours for the control group, (P>0.23) but there were statistically significant differences for Group II (P<0.0002); Group III (P<0.002) and Group IV (P<0.0001). For moderately diabetic mice, CA and chlorpropamide decreased the glucose levels by 25.6% and 16.3% respectively while for the severely diabetic mice CA decreased the blood glucose by 43.7%. It is proposed that CA has an insulinogenic property that possibly stimulated dormant beta-cells to secrete insulin. The histopathology of several organs in the treated animals was found to differ from the expected. The islets of Langerhans for example were found to be preserved in the time frame examined. Also the liver and kidney were found to display milder pathology in the treated groups.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Euphorbiaceae/chemistry , Insulin/blood , Phytotherapy/methods , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Animals , Dose-Response Relationship, Drug , Islets of Langerhans/drug effects , Islets of Langerhans/pathology , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Mice , Mice, Inbred NOD , Plant Extracts/pharmacology
3.
J Biol Inorg Chem ; 12(4): 477-93, 2007 May.
Article in English | MEDLINE | ID: mdl-17211629

ABSTRACT

A series of platinum(II) amidine complexes were previously prepared with the aim of obtaining a new class of platinum-based antitumour drugs. This series includes compounds of the type cis--[PtCl2{Z-HN=C(NHMe)Me}2] and trans-[PtCl2{Z-HN=C(NHMe)Me}2] (1, 2), cis-[PtCl2{E-HN=C(NMe2)Me}2] and trans-[PtCl2{E-HN=C(NMe2)Me}2] (3, 4), cis-[PtCl2{Z-HN=C(NHMe)Ph}2] and trans-[PtCl2{Z-HN=C(NHMe)Ph}2] (5, 6), and cis-[PtCl2{HN=C(NMe2)Ph}2] and trans-[PtCl2{HN=C(NMe2)Ph}2] (7, 8). The reactions with dimethyl sulfoxide were studied for complexes 5-8; the formation of cationic species containing coordinated dimethyl sulfoxide was demonstrated by NMR experiments and electrospray ionization mass spectrometry. In this work, the amidine platinum(II) complexes were tested for their in vitro cytotoxicity on a panel of various human cancer cell lines. The results indicate that the benzamidine complex 8 was the most effective derivative also circumventing acquired cisplatin resistance as demonstrated by chemosensitivity tests performed on cisplatin-sensitive and cisplatin-resistant cell lines. The studies concerning the cellular DNA damage on both parental chemosensitive and resistant sublines suggest for the new trans-amidine complex a different mechanism of action compared with that exhibited by cisplatin.


Subject(s)
Furans/chemistry , Furans/toxicity , Platinum Compounds/chemistry , Platinum Compounds/toxicity , Amidines/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , DNA/chemistry , DNA/metabolism , Humans , Isomerism , Magnetic Resonance Spectroscopy , Molecular Structure , Platinum Compounds/isolation & purification , Solutions , Spectrometry, Mass, Electrospray Ionization
4.
Inorg Chem ; 40(6): 1134-42, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11300809

ABSTRACT

The dialkylcyanamide complexes cis-[PtCl(NCNR(2))(PPh(3))(2)][BF(4)] 1 and cis-[Pt(NCNR(2))(2)(PPh(3))(2)][BF(4)](2) 2 (R = Me or Et) have been prepared by treatment of a CH(2)Cl(2) solution of cis-[PtCl(2)(PPh(3))(2)] with the appropriate dialkylcyanamide and one or two equivalents of Ag[BF(4)], respectively. Compounds 2 can also be obtained from 1 by a similar procedure. Their reaction with oximes, HON=CR'R' ' (R'R' ' = Me(2) or C(4)H(8)), in CH(2)Cl(2) and in the presence of Ag[BF(4)] or Cu(CH(3)COO)(2), leads to the novel type of azametallacycles cis-[Pt(NH=C(ON=CR'R")-NR2)(PPh3)2][BF4]2 4 upon an unprecedented coupling of the organocyanamides with oximes, in a process that proceeds via the mixed oxime-organocyanamide species cis-[Pt(NCNR(2))(HON=CR'R' ')(PPh(3))(2)][BF(4)](2) 3, and is catalyzed by either Ag(+) or Cu(2+) which activate the ligating organocyanamide by Lewis acid addition to the amide group. In contrast, in the organonitrile complexes cis-[Pt(NCR)(2)(PPh(3))(2)][BF(4)](2) 5 (R = C(6)H(4)OMe-4 or Et), obtained in a similar way as 2 (but by using NCR instead of the cyanamide), the ligating NCR is not activated by the Lewis acid and does not couple with the oximes. The spectroscopic properties of those complexes are reported along with the molecular structures of 2b (R = Et), 4a1 (R = Me, R'R' ' = Me(2)), and 4b1 (R = Et, R'R' ' = Me(2)), as established by X-ray crystallography which indicates that in the former complex the amide-N-atoms are trigonal planar, whereas in the latter (4a1 and 4b1) the five-membered rings are planar with a localized N=C double bond (imine group derived from the cyanamide) and the exocyclic amide and alkylidene groups (in 4b1) are involved in two intramolecular H-bonds to the oxygen atom of the ring.

SELECTION OF CITATIONS
SEARCH DETAIL
...