Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 4(25): 21487-21493, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867544

ABSTRACT

We numerically investigate the impact of electron-phonon scattering on the optical properties of a perovskite material (CH3NH3PbI3). Using nonequilibrium Green function formalism, we calculate the local density of states for several values of the electron-phonon scattering strength. We report an Urbach-like penetration of the density of states in the band gap due to scattering. A physical analytical model allows us to attribute this behavior to a multiphonon process. Values of Urbach energy up to 9.5 meV are obtained, meaning that scattering contribution to the total experimental Urbach energy of 15 meV is quite important. We also show that the open-circuit voltage V oc, for a solar cell assuming such a material as an absorber, depends on the scattering strength. V oc loss increases with the scattering strength, up to 41 mV. Finally, an unexpected result of this study, is that the impact of electron-phonon scattering on Urbach tail and V oc increases with the phonon energy. This low value in perovskite (8 meV) is therefore an advantage for photovoltaic applications.

2.
J Phys Condens Matter ; 29(17): 175301, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28333684

ABSTRACT

We discuss some thermodynamic aspects of energy conversion in electronic nanosystems able to convert light energy into electrical or/and thermal energy using the non-equilibrium Green's function formalism. In a first part, we derive the photon energy and particle currents inside a nanosystem interacting with light and in contact with two electron reservoirs at different temperatures. Energy conservation is verified, and radiation laws are discussed from electron non-equilibrium Green's functions. We further use the photon currents to formulate the rate of entropy production for steady-state nanosystems, and we recast this rate in terms of efficiency for specific photovoltaic-thermoelectric nanodevices. In a second part, a quantum dot based nanojunction is closely examined using a two-level model. We show analytically that the rate of entropy production is always positive, but we find numerically that it can reach negative values when the derived particule and energy currents are empirically modified as it is usually done for modeling realistic photovoltaic systems.

3.
ACS Appl Mater Interfaces ; 8(39): 26198-26206, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27615556

ABSTRACT

A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p-n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The -3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications.

4.
J Phys Condens Matter ; 27(1): 015302, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25493577

ABSTRACT

Mixed, charge and heat current fluctuations as well as thermoelectric differential conductances are considered for non-interacting nanosystems connected to reservoirs. Using the Landauer-Büttiker formalism, we derive general expressions for these quantities and consider their possible relationships in the entire ranges of temperature, voltage and coupling to the environment or reservoirs. We introduce a dimensionless quantity given by the ratio between the product of mixed noises and the product of charge and heat noises, distinguishing between the auto-ratio defined in the same reservoir and the cross-ratio between distinct reservoirs. From the linear response regime to the high-voltage regime, we further specify the analytical expressions of differential conductances, noises and ratios of noises, and examine their behavior in two concrete nanosystems: a quantum point contact in an ohmic environment and a single energy level quantum dot connected to reservoirs. In the linear response regime, we find that these ratios are equal to each other and are simply related to the figure of merit. They can be expressed in terms of differential conductances with the help of the fluctuation-dissipation theorem. In the non-linear regime, these ratios radically distinguish between themselves as the auto-ratio remains bounded by one, while the cross-ratio exhibits rich and complex behaviors. In the quantum dot nanosystem, we moreover demonstrate that the thermoelectric efficiency can be expressed as a ratio of noises in the non-linear Schottky regime. In the intermediate voltage regime, the cross-ratio changes sign and diverges, which evidences a change of sign in the heat cross-noise.

SELECTION OF CITATIONS
SEARCH DETAIL
...