Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-495142

ABSTRACT

Accurate inference of who infected whom in an infectious disease outbreak is critical for the delivery of effective infection prevention and control. The increased resolution of pathogen whole-genome sequencing has significantly improved our ability to infer transmission events. Despite this, transmission inference often remains limited by the lack of genomic variation between the source case and infected contacts. Although within-host genetic diversity is common among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic approaches to reconstruct outbreaks exclusively use consensus sequences, which consider only the most prevalent nucleotide at each position and therefore fail to capture low frequency variation within samples. We hypothesized that including within-sample variation in a phylogenetic model would help to identify who infected whom in instances in which this was previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we show how within-sample diversity is stable among repeated serial samples from the same host, is transmitted between those cases with known epidemiological links, and how this improves phylogenetic inference and our understanding of who infected whom. Our technique is applicable to other infectious diseases and has immediate clinical utility in infection prevention and control.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21261725

ABSTRACT

Quarantining close contacts of individuals infected with SARS-CoV-2 for 10 to 14 days is a key strategy in reducing transmission. However, quarantine requirements are often unpopular, with low adherence, especially when a large fraction of the population has been vaccinated. Daily contact testing (DCT), in which contacts are required to isolate only if they test positive, is an alternative to quarantine for mitigating the risk of transmission from traced contacts. In this study, we developed an integrated model of COVID-19 transmission dynamics and compared the strategies of quarantine and DCT with regard to reduction in transmission and social/economic costs (days of quarantine/self-isolation). Specifically, we compared 10-day quarantine to 7 days of self-testing using rapid lateral flow antigen tests, starting 3 days after exposure to a case. We modelled both incomplete adherence to quarantine and incomplete adherence to DCT. We found that DCT reduces transmission from contacts with similar effectiveness, at much lower social/economic costs, especially for highly vaccinated populations. The findings were robust across a spectrum of scenarios with varying assumptions on the speed of contact tracing, sensitivity of lateral flow antigen tests, adherence to quarantine and uptake of testing. Daily tests would also allow rapid initiation of a new round of tracing from infected contacts.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20195925

ABSTRACT

SARS-CoV-2 has spread across the world, causing high mortality and unprecedented restrictions on social and economic activity. Policymakers are assessing how best to navigate through the ongoing epidemic, with models being used to predict the spread of infection and assess the impact of public health measures. Here, we present OpenABM-Covid19: an agent-based simulation of the epidemic including detailed age-stratification and realistic social networks. By default the model is parameterised to UK demographics and calibrated to the UK epidemic, however, it can easily be re-parameterised for other countries. OpenABM-Covid19 can evaluate non-pharmaceutical interventions, including both manual and digital contact tracing. It can simulate a population of 1 million people in seconds per day allowing parameter sweeps and formal statistical model-based inference. The code is open-source and has been developed by teams both inside and outside academia, with an emphasis on formal testing, documentation, modularity and transparency. A key feature of OpenABM-Covid19 is its Python interface, which has allowed scientists and policymakers to simulate dynamic packages of interventions and help compare options to suppress the COVID-19 epidemic.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20188516

ABSTRACT

The timing of SARS-CoV-2 transmission is a critical factor to understand the epidemic trajectory and the impact of isolation, contact tracing and other non-pharmaceutical interventions on the spread of COVID-19 epidemics. We examined the distribution of transmission events with respect to exposure and onset of symptoms. We show that for symptomatic individuals, the timing of transmission of SARS-CoV-2 is more strongly linked to the onset of clinical symptoms of COVID-19 than to the time since infection. We found that it was approximately centered and symmetric around the onset of symptoms, with three quarters of events occurring in the window from 2-3 days before to 2-3 days after. However, we caution against overinterpretation of the right tail of the distribution, due to its dependence on behavioural factors and interventions. We also found that the pre-symptomatic infectious period extended further back in time for individuals with longer incubation periods. This strongly suggests that information about when a case was infected should be collected where possible, in order to assess how far into the past their contacts should be traced. Overall, the fraction of transmission from strictly pre-symptomatic infections was high (41%; 95%CI 31-50%), which limits the efficacy of symptom-based interventions, and the large fraction of transmissions (35%; 95%CI 26-45%) that occur on the same day or the day after onset of symptoms underlines the critical importance of individuals distancing themselves from others as soon as they notice any symptoms, even if they are mild. Rapid or at-home testing and contextual risk information would greatly facilitate efficient early isolation.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20151753

ABSTRACT

In May 2020 the UK introduced a Test, Trace, Isolate programme in response to the COVID-19 pandemic. The programme was first rolled out on the Isle of Wight and included Version 1 of the NHS contact tracing app. We used COVID-19 daily case data to infer incidence of new infections and estimate the reproduction number R for each of 150 Upper Tier Local Authorities in England, and at the National level, before and after the launch of the programme on the Isle of Wight. We used Bayesian and Maximum-Likelihood methods to estimate R, and compared the Isle of Wight to other areas using a synthetic control method. We observed significant decreases in incidence and R on the Isle of Wight immediately after the launch. These results are robust across each of our approaches. Our results show that the sub-epidemic on the Isle of Wight was controlled significantly more effectively than the sub-epidemics of most other Upper Tier Local Authorities, changing from having the third highest reproduction number R (of 150) before the intervention to the tenth lowest afterwards. The data is not yet available to establish a causal link. However, the findings highlight the need for further research to determine the causes of this reduction, as these might translate into local and national non-pharmaceutical intervention strategies in the period before a treatment or vaccination becomes available.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20032946

ABSTRACT

The newly emergent human virus SARS-CoV-2 is resulting in high fatality rates and incapacitated health systems. Preventing further transmission is a priority. We analysed key parameters of epidemic spread to estimate the contribution of different transmission routes and determine requirements for case isolation and contact-tracing needed to stop the epidemic. We conclude that viral spread is too fast to be contained by manual contact tracing, but could be controlled if this process was faster, more efficient and happened at scale. A contact-tracing App which builds a memory of proximity contacts and immediately notifies contacts of positive cases can achieve epidemic control if used by enough people. By targeting recommendations to only those at risk, epidemics could be contained without need for mass quarantines ( lock-downs) that are harmful to society. We discuss the ethical requirements for an intervention of this kind.

SELECTION OF CITATIONS
SEARCH DETAIL
...