Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(4): eabl8147, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35080971

ABSTRACT

Structural colors originate by constructive interference following reflection and scattering of light from nanostructures with periodicity comparable to visible light wavelengths. Bright and noniridescent structural colorations are highly desirable. Here, we demonstrate that bright noniridescence structural coloration can be easily and rapidly achieved from suspended two-dimensional nanosheets of a clay mineral. We show that brightness is enormously improved by using double clay nanosheets, thus optimizing the clay refractive index that otherwise hampers structural coloration from such systems. Intralayer distances, and thus the structural colors, can be precisely and reproducibly controlled by clay concentration and ionic strength independently, and noniridescence is readily and effortlessly obtained in this system. Embedding such clay-designed nanosheets in recyclable solid matrices could provide tunable vivid coloration and mechanical strength and stability at the same time, thus opening a previously unknown venue for sustainable structural coloration.

2.
RSC Adv ; 11(23): 14169-14177, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-35423953

ABSTRACT

An optical, electronic and structural characterisation of three natural dyes potentially interesting for application in organic solar cells, curcumin (C21H20O6), bixin (C25H30O4) and indigo (C16H10N2O2), was performed. X-Ray Diffraction (XRD) measurements, showed that curcumin has a higher degree of crystallinity compared to bixin and indigo. The results from the Pawley unit cell refinements for all dyes are reported. Optical absorption spectra measured by UV-Visible Spectroscopy (UV-Vis) on thermally evaporated films revealed that bixin undergoes chemical degradation upon evaporation, while curcumin and indigo appear to remain unaffected by this process. Combined Ultraviolet Photoemission Spectroscopy (UPS) and Inverse Photoemission Spectroscopy (IPES) spectra measured on the dyes revealed that all of them are hole-conducting materials and allowed for the determination of their electronic bandgaps, and Fermi level position within the gap. UV Photo-Emission Electron Microscopy (PEEM) revealed the workfunction of the dye materials and indicated that indigo has a negative electron affinity. PEEM was also used to study degradation by UV irradiation and showed that they are quite robust to UV exposure.

3.
Environ Sci Technol ; 54(13): 8323-8332, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32525672

ABSTRACT

Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (µ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ µ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.


Subject(s)
Carbon Dioxide , Carbonates , Construction Materials , Water , X-Ray Microtomography
4.
Phys Rev E ; 99(1-1): 013102, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30780303

ABSTRACT

The transport of chemical species in porous media is ubiquitous in subsurface processes, including contaminant transport, soil drying, and soil remediation. We study vapor transport in a multiscale porosity material, a smectite clay, in which water molecules travel in mesopores and macropores between the clay grains but can also intercalate inside the nanoporous grains, making them swell. The intercalation dynamics is known to be controlled by the type of cation that is present in the nanopores; in this case exchanging the cations from Na^{+} to Li^{+} accelerates the dynamics. By inferring spatial profiles of mesoporous humidity from a space-resolved measurement of grain swelling, and analyzing them with a fractional diffusion equation, we show that exchanging the cations changes mesoporous transport from Fickian to markedly subdiffusive. This results both from modifying the exchange dynamics between the mesoporous and nanoporous phases, and from the feedback of transport on the medium's permeability due to grain swelling. An important practical implication is a large difference in the time needed for vapor to permeate a given length of the clay depending on the type of intercalated cation.

SELECTION OF CITATIONS
SEARCH DETAIL
...