Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Neurochem ; 80(3): 375-82, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11905986

ABSTRACT

Rats with portocaval anastomosis (PCA), an animal model of hepatic encephalopathy (HE), have very high brain histamine concentrations. Our previous studies based on a biochemical approach indicated histamine accumulation in the neuronal compartment. In this study, immunohistochemical evidence is presented which further supports the amine localization in histaminergic neurons. These neurons become pathological in appearance with cisternae frequently seen along histaminergic fibres in many brain areas, including the hypothalamus, amygdala, substantia nigra and cerebral cortex. Such formations were not observed in sham-operated animals. The neuronal deposition is predominant, and unique for histamine. It serves as a mechanism to counterbalance excessive brain neurotransmitter formation evoked by PCA. However, there are other mechanisms. The data provided here show that there is also a significant increase in histamine catabolism in the shunted rats, as reflected by both the higher brain N-tele-methylhistamine (t-MeHA) concentration and urinary excretion of N-tele-methylimidazoleacetic acid (t-MelmAA), a major brain histamine end product. The stomach, in addition to the brain, is a site of enhanced histamine synthesis in portocavally shunted subjects. After gastrectomy or food deprivation to eliminate the contribution of the stomach, shunted rats excrete significantly more t-MelmAA, implying the role of the CNS. This last finding suggests that under strictly defined conditions, namely in parenterally fed HE patients with abnormal plasma L-histidine, the measurement of urinary t-MelmAA might provide valuable information concerning putative brain histaminergic activity.


Subject(s)
Hepatic Encephalopathy/metabolism , Histamine/metabolism , Imidazoles/urine , Neurons/metabolism , Animals , Animals, Outbred Strains , Brain/cytology , Brain/metabolism , Disease Models, Animal , Food Deprivation/physiology , Gastrectomy , Histamine/analysis , Histidine Decarboxylase/metabolism , Male , Neurons/chemistry , Portacaval Shunt, Surgical , Rats , Rats, Wistar
3.
Dev Dyn ; 221(1): 81-91, 2001 May.
Article in English | MEDLINE | ID: mdl-11357196

ABSTRACT

Histamine mediates many types of physiologic signals in multicellular organisms. To clarify the developmental role of histamine, we have examined the developmental expression of L-histidine decarboxylase (HDC) mRNA and the production of histamine during mouse development. The predominant expression of HDC in mouse development was seen in mast cells. The HDC expression was evident from embryonal day 13 (Ed13) until birth, and the mast cells were seen in most peripheral tissues. Several novel sites with a prominent HDC mRNA expression were revealed. In the brain, the choroid plexus showed HDC expression at Ed14 and the raphe neurons at Ed15. Close to the parturition, at Ed19, the neurons in the tuberomammillary (TM) area and the ventricular neuroepithelia also displayed a clear HDC mRNA expression and histamine immunoreactivity (HA-ir). From Ed14 until birth, the olfactory and nasopharyngeal epithelia showed an intense HDC mRNA expression and HA-ir. In the olfactory epithelia, the olfactory receptor neurons (ORN) were shown to have very prominent histamine immunoreactivity. The bipolar nerve cells in the epithelium extended both to the epithelial surface and into the subepithelial layers to be collected into thick nerve bundles extending caudally toward the olfactory bulbs. Also, in the nasopharynx, an extensive subepithelial network of histamine-immunoreactive nerve fibers were seen. Furthermore, in the peripheral tissues, the degenerating mesonephros (Ed14) and the convoluted tubules in the developing kidneys (Ed15) showed HDC expression, as did the prostate gland (Ed15). In adult mouse brain, the HDC expression resembled the neuronal pattern observed in rat brain. The expression was restricted to the TM area in the ventral hypothalamus, with the main expression in the five TM subgroups called E1-E5. A distinct mouse HDC mRNA expression was also seen in the ependymal wall of the third ventricle, which has not been reported in the rat. The tissue- and cell-specific expression patterns of HDC and histamine presented in this work indicate that histamine could have cell guidance or regulatory roles in development.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Histidine Decarboxylase/genetics , Histidine Decarboxylase/metabolism , Histidine/metabolism , Age Factors , Animals , Antibodies , Ependyma/embryology , Ependyma/enzymology , Female , Histidine/analysis , Histidine/immunology , Hypothalamic Area, Lateral/embryology , Hypothalamic Area, Lateral/enzymology , Immunohistochemistry , In Situ Hybridization , Kidney/embryology , Kidney/enzymology , Male , Mice , Mice, Inbred BALB C , Olfactory Mucosa/embryology , Olfactory Mucosa/enzymology , Pregnancy , Prostate/embryology , Prostate/enzymology , RNA, Messenger/analysis
4.
J Physiol Pharmacol ; 52(4 Pt 1): 657-70, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11787765

ABSTRACT

Biochemical parameters of the histamine (HA) system were examined in both rat brain and stomach, after portocaval anastomosis (PCA). These tissues become rich in histamine after PCA. Immunocytochemistry was used for brain histamine localisation. In addition to increased HA concentrations, monoamine oxidase B activity increased in both tissues. In hypothalamus HA was 15 fold; in cerebral cortex and in stomach mucosa 2.8 and 2.5 fold of the corresponding controls, respectively. MAO B activity was increased by approximately 50% in brain and 100% in stomach. A significant, uneven increase in tele-methylhistamine concentration was only found in the brain. In stomach mucosa higher histidine decarboxylase activity was found. PCA and sham rats treated with an irreversible inhibitor of MAO B, FA-73, 0.5 mg/kg i.p., showed 24 h later greatly reduced MAO activity and doubled t-MeHA concentration in brain structures. The treatment had no effect on gastric mucosal t-MeHA concentration and urinary excretion of the t-MeHA metabolite, N-tele-methylimidazoleacetic acid. The HA rise in the stomach of PCA rats is associated with proliferation of histamine producing and storing cells (ECL cells) as demonstrated by others. However, in the brain we saw no indication for increased number of relevant cells either mast cells or neurons and our immunocytochemical findings suggest that in PCA rat brain, histamine deposits are located exclusively in neurons. The data indicate that the adaptative mechanisms to excessive histamine formation are tissue specific.


Subject(s)
Brain/metabolism , Gastric Mucosa/metabolism , Histamine/biosynthesis , Portacaval Shunt, Surgical , Animals , Male , Methylhistamines/analysis , Monoamine Oxidase Inhibitors/pharmacology , Neurons/metabolism , Rats , Rats, Inbred F344 , Rats, Wistar
5.
J Chem Neuroanat ; 18(1-2): 65-74, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10708920

ABSTRACT

Histaminergic neurons in adult vertebrate brain are confined to the posterior hypothalamic area, where they are comprised of scattered groups of neurons referred to as the tuberomammillary nucleus. Histamine regulates hormonal functions, sleep, food intake, thermoregulation and locomotor activity, for example. In the zebrafish, Danio rerio, histamine was detected only in the brain, where also the histamine synthesizing enzyme L-histidine decarboxylase (HDC) was expressed. It is possible that histamine has first evolved as a neurotransmitter in the central nervous system. We established sensitive quantitative in situ hybridization methods for histamine H(1) and H(2) receptors and HDC, to study the modulation of brain histaminergic system under pathophysiological conditions. A transient increase in H(1) receptor expression was seen in the dentate gyrus and striatum after a single injection of kainic acid, a glutamate analog. H(1) antagonists are known to increase duration of convulsions, and increased brain histamine is associated with reduced convulsions in animal models of epilepsy. No HDC mRNA was detected in brain vessels by in situ hybridization, which suggests lack of histamine synthesis by brain endothelial cells. This was verified by lack of HDC mRNA in a rat brain endothelial cell line, RBE4 cells. Both H(1) and H(2) receptor mRNA was found in this cell line, and the expression of both receptors was downregulated by dexamethasone. The findings are in agreement with the concept that histamine regulates blood-brain barrier permeability through H(1) and H(2) receptor mediated mechanisms. Hibernation is characterized by a drastic reduction of central functions. The activity of most transmitter systems is maintained at a very low level. Surprisingly, histamine levels and turnover were clearly elevated in hibernating ground squirrels, and the density of histamine-containing fibers was higher than in euthermic animals. It is possible that histamine actively maintains the low activity of other transmitters during the hibernation state.


Subject(s)
Brain/cytology , Brain/physiology , Hibernation/physiology , Histamine/metabolism , Neurons/cytology , Amino Acid Sequence , Animals , Histidine Decarboxylase/chemistry , Histidine Decarboxylase/genetics , Histidine Decarboxylase/metabolism , Humans , Molecular Sequence Data , Neurons/physiology , Rats , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...