Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 14(2): 240-257, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37916956

ABSTRACT

PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Breast Neoplasms , Hyperinsulinism , Humans , Female , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Cryoelectron Microscopy , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/genetics , Hyperinsulinism/drug therapy , Hyperinsulinism/genetics , DNA
2.
J Pharmacol Exp Ther ; 383(1): 56-69, 2022 10.
Article in English | MEDLINE | ID: mdl-35926871

ABSTRACT

Ion channels are targets of considerable therapeutic interest to address a wide variety of neurologic indications, including pain perception. Current pharmacological strategies have focused mostly on small molecule approaches that can be limited by selectivity requirements within members of a channel family or superfamily. Therapeutic antibodies have been proposed, designed, and characterized to alleviate this selectivity limitation; however, there are no Food and Drug Administration-approved therapeutic antibody-based drugs targeting ion channels on the market to date. Here, in an effort to identify novel classes of engineered ion channel modulators for potential neurologic therapeutic applications, we report the generation and characterization of six (EC50 < 25nM) Cys-loop receptor family monoclonal antibodies with modulatory function against rat and human glycine receptor alpha 1 (GlyRα1) and/or GlyRα3. These antibodies have activating (i.e., positive modulator) or inhibiting (i.e., negative modulator) profiles. Moreover, GlyRα3 selectivity was successfully achieved for two of the three positive modulators identified. When dosed intravenously, the antibodies achieved sufficient brain exposure to cover their calculated in vitro EC50 values. When compared head-to-head at identical exposures, the GlyRα3-selective antibody showed a more desirable safety profile over the nonselective antibody, thus demonstrating, for the first time, an advantage for GlyRα3-selectivity. Our data show that ligand-gated ion channels of the glycine receptor family within the central nervous system can be functionally modulated by engineered biologics in a dose-dependent manner and that, despite high protein homology between the alpha subunits, selectivity can be achieved within this receptor family, resulting in future therapeutic candidates with more desirable drug safety profiles. SIGNIFICANCE STATEMENT: This study presents immunization and multiplatform screening approaches to generate a diverse library of functional antibodies (agonist, potentiator, or inhibitory) raised against human glycine receptors (GlyRs). This study also demonstrates the feasibility of acquiring alpha subunit selectivity, a desirable therapeutic profile. When tested in vivo, these tool molecules demonstrated an increased safety profile in favor of GlyRα3-selectivity. These are the first reported functional GlyR antibodies that may open new avenues to treating central nervous system diseases with subunit selective biologics.


Subject(s)
Antibodies, Monoclonal , Receptors, Glycine , Animals , Rats , Humans , Receptors, Glycine/metabolism , Ligands , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/metabolism , Synaptic Transmission
3.
Clin Transl Immunology ; 10(6): e1295, 2021.
Article in English | MEDLINE | ID: mdl-34141433

ABSTRACT

OBJECTIVES: Bruton's tyrosine kinase (BTK) plays a non-redundant signaling role downstream of the B-cell receptor (BCR) in B cells and the receptors for the Fc region of immunoglobulins (FcR) in myeloid cells. Here, we characterise BIIB091, a novel, potent, selective and reversible small-molecule inhibitor of BTK. METHODS: BIIB091 was evaluated in vitro and in vivo in preclinical models and in phase 1 clinical trial. RESULTS: In vitro, BIIB091 potently inhibited BTK-dependent proximal signaling and distal functional responses in both B cells and myeloid cells with IC50s ranging from 3 to 106 nm, including antigen presentation to T cells, a key mechanism of action thought to be underlying the efficacy of B cell-targeted therapeutics in multiple sclerosis. BIIB091 effectively sequestered tyrosine 551 in the kinase pocket by forming long-lived complexes with BTK with t 1/2 of more than 40 min, thereby preventing its phosphorylation by upstream kinases. As a key differentiating feature of BIIB091, this property explains the very potent whole blood IC50s of 87 and 106 nm observed with stimulated B cells and myeloid cells, respectively. In vivo, BIIB091 blocked B-cell activation, antibody production and germinal center differentiation. In phase 1 healthy volunteer trial, BIIB091 inhibited naïve and unswitched memory B-cell activation, with an in vivo IC50 of 55 nm and without significant impact on lymphoid or myeloid cell survival after 14 days of dosing. CONCLUSION: Pharmacodynamic results obtained in preclinical and early clinical settings support the advancement of BIIB091 in phase 2 clinical trials.

4.
Nat Chem Biol ; 16(4): 391-399, 2020 04.
Article in English | MEDLINE | ID: mdl-32042197

ABSTRACT

Phospholipase D enzymes (PLDs) are ubiquitous phosphodiesterases that produce phosphatidic acid (PA), a key second messenger and biosynthetic building block. Although an orthologous bacterial Streptomyces sp. strain PMF PLD structure was solved two decades ago, the molecular basis underlying the functions of the human PLD enzymes (hPLD) remained unclear based on this structure due to the low homology between these sequences. Here, we describe the first crystal structures of hPLD1 and hPLD2 catalytic domains and identify novel structural elements and functional differences between the prokaryotic and eukaryotic enzymes. Furthermore, structure-based mutation studies and structures of inhibitor-hPLD complexes allowed us to elucidate the binding modes of dual and isoform-selective inhibitors, highlight key determinants of isoenzyme selectivity and provide a basis for further structure-based drug discovery and functional characterization of this therapeutically important superfamily of enzymes.


Subject(s)
Phospholipase D/ultrastructure , Amino Acid Sequence , Catalytic Domain , Drug Design , Humans , Isoenzymes/metabolism , Phospholipase D/metabolism , Phospholipase D/physiology , Phosphoric Diester Hydrolases/metabolism , Structure-Activity Relationship
5.
Nat Struct Mol Biol ; 24(2): 108-113, 2017 02.
Article in English | MEDLINE | ID: mdl-27991902

ABSTRACT

Current therapies to treat persistent pain and neuropathic pain are limited by poor efficacy, side effects and risk of addiction. Here, we present a novel class of potent selective, central nervous system (CNS)-penetrant potentiators of glycine receptors (GlyRs), ligand-gated ion channels expressed in the CNS. AM-1488 increased the response to exogenous glycine in mouse spinal cord and significantly reversed mechanical allodynia induced by nerve injury in a mouse model of neuropathic pain. We obtained an X-ray crystal structure of human homopentameric GlyRα3 in complex with AM-3607, a potentiator of the same class with increased potency, and the agonist glycine, at 2.6-Å resolution. AM-3607 binds a novel allosteric site between subunits, which is adjacent to the orthosteric site where glycine binds. Our results provide new insights into the potentiation of cysteine-loop receptors by positive allosteric modulators and hold promise in structure-based design of GlyR modulators for the treatment of neuropathic pain.


Subject(s)
Receptors, Glycine/chemistry , Allosteric Regulation , Binding Sites , Binding, Competitive , Crystallography, X-Ray , Glycine/chemistry , HEK293 Cells , Humans , Hydrogen Bonding , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Protein Subunits/chemistry
6.
J Med Chem ; 60(3): 1105-1125, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28001399

ABSTRACT

Current pain therapeutics suffer from undesirable psychotropic and sedative side effects, as well as abuse potential. Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels expressed in nerves of the spinal dorsal horn, where their activation is believed to reduce transmission of painful stimuli. Herein, we describe the identification and hit-to-lead optimization of a novel class of tricyclic sulfonamides as allosteric GlyR potentiators. Initial optimization of high-throughput screening (HTS) hit 1 led to the identification of 3, which demonstrated ex vivo potentiation of glycine-activated current in mouse dorsal horn neurons from spinal cord slices. Further improvement of potency and pharmacokinetics produced in vivo proof-of-concept tool molecule 20 (AM-1488), which reversed tactile allodynia in a mouse spared-nerve injury (SNI) model. Additional structural optimization provided highly potent potentiator 32 (AM-3607), which was cocrystallized with human GlyRα3cryst to afford the first described potentiator-bound X-ray cocrystal structure within this class of ligand-gated ion channels (LGICs).


Subject(s)
Receptors, Glycine/agonists , Sulfonamides/pharmacology , Animals , HEK293 Cells , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL
7.
PLoS One ; 11(11): e0165983, 2016.
Article in English | MEDLINE | ID: mdl-27832137

ABSTRACT

MLKL is a pore forming pseudokinase involved in the final stage of necroptosis, a form of programmed cell death. Its phosphorylation by RIPK3 is necessary for triggering necroptosis but not for triggering apoptosis, which makes it a unique target for pharmacological inhibition to block necroptotic cell death. This mechanism has been described as playing a role in disease progression in neurodegenerative and inflammatory diseases. A type II kinase inhibitor (cpd 1) has been described that reportedly binds to the MLKL pseudokinase domain and prevents necroptosis. Here we describe five compounds that bind to the MLKL ATP-binding site, however the four MLKL-selective compounds have no activity in rescuing cells from necroptosis. We use kinase selectivity panels, crystallography and a new conformationally sensitive method of measuring protein conformational changes (SHG) to confirm that the one previously reported compound that can rescue cells (cpd 1) is a non-selective type II inhibitor that also inhibits the upstream kinase RIPK1. Although this compound can shift the GFE motif of the activation loop to an "out" position, the accessibility of the key residue Ser358 in the MLKL activation loop is not affected by compound binding to the MLKL active site. Our studies indicate that an ATP-pocket inhibitor of the MLKL pseudokinase domain does not have any impact on the necroptosis pathway, which is contrary to a previously reported study.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Death/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , HSP90 Heat-Shock Proteins/metabolism , Humans , Jurkat Cells , Models, Molecular , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Conformation/drug effects , Protein Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
8.
PLoS One ; 11(9): e0163366, 2016.
Article in English | MEDLINE | ID: mdl-27658254

ABSTRACT

Panitumumab and cetuximab target the epidermal growth factor receptor for the treatment of metastatic colorectal cancer. These therapies provide a significant survival benefit to patients with metastatic colorectal cancer with wild-type RAS. A single point mutation in the ectodomain of EGFR (S468R) confers acquired or secondary resistance in cetuximab treated patients, which is not observed in panitumumab-treated patients. Structural and biophysical studies presented here show this mutation directly blocks cetuximab binding to EGFR domain III and describes a unique mechanism by which panitumumab uses a central cavity to accommodate this mutation.

9.
Anal Biochem ; 511: 17-23, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27485270

ABSTRACT

Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 µM in the LAD2 cell assay.


Subject(s)
Enzyme Inhibitors/chemistry , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/chemistry , Lipocalins/antagonists & inhibitors , Lipocalins/chemistry , Cell Line , Drug Evaluation, Preclinical/methods , Humans , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lipocalins/genetics , Lipocalins/metabolism , Prostaglandin D2/biosynthesis , Prostaglandin D2/blood , Prostaglandin H2/chemistry , Prostaglandin H2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
ACS Med Chem Lett ; 7(7): 719-23, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27437084

ABSTRACT

We report the discovery of PDE10A PET tracer AMG 580 developed to support proof of concept studies with PDE10A inhibitors in the clinic. To find a tracer with higher binding potential (BPND) in NHP than our previously reported tracer 1, we implemented a surface plasmon resonance assay to measure the binding off-rate to identify candidates with slower washout rate in vivo. Five candidates (2-6) from two structurally distinct scaffolds were identified that possessed both the in vitro characteristics that would favor central penetration and the structural features necessary for PET isotope radiolabeling. Two cinnolines (2, 3) and one keto-benzimidazole (5) exhibited PDE10A target specificity and brain uptake comparable to or better than 1 in the in vivo LC-MS/MS kinetics distribution study in SD rats. In NHP PET imaging study, [(18)F]-5 produced a significantly improved BPND of 3.1 and was nominated as PDE10A PET tracer clinical candidate for further studies.

11.
J Med Chem ; 58(24): 9663-79, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26551034

ABSTRACT

The HTS-based discovery and structure-guided optimization of a novel series of GKRP-selective GK-GKRP disrupters are revealed. Diarylmethanesulfonamide hit 6 (hGK-hGKRP IC50 = 1.2 µM) was optimized to lead compound 32 (AMG-0696; hGK-hGKRP IC50 = 0.0038 µM). A stabilizing interaction between a nitrogen atom lone pair and an aromatic sulfur system (nN → σ*S-X) in 32 was exploited to conformationally constrain a biaryl linkage and allow contact with key residues in GKRP. Lead compound 32 was shown to induce GK translocation from the nucleus to the cytoplasm in rats (IHC score = 0; 10 mg/kg po, 6 h) and blood glucose reduction in mice (POC = -45%; 100 mg/kg po, 3 h). X-ray analyses of 32 and several precursors bound to GKRP were also obtained. This novel disrupter of GK-GKRP binding enables further exploration of GKRP as a potential therapeutic target for type II diabetes and highlights the value of exploiting unconventional nonbonded interactions in drug design.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Sulfonamides/chemistry , Thiophenes/chemistry , Active Transport, Cell Nucleus , Animals , Blood Glucose/metabolism , Cell Nucleus/metabolism , Crystallography, X-Ray , Cytoplasm/metabolism , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Male , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Protein Binding , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Thiophenes/pharmacokinetics , Thiophenes/pharmacology
12.
Nature ; 526(7572): 277-80, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26416729

ABSTRACT

Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.


Subject(s)
Receptors, Glycine/chemistry , Receptors, Glycine/metabolism , Strychnine/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Ion Channel Gating/drug effects , Models, Molecular , Protein Multimerization/drug effects , Protein Structure, Tertiary/drug effects , Receptors, Glycine/antagonists & inhibitors , Strychnine/chemistry , Strychnine/pharmacology , Substrate Specificity
13.
Biochim Biophys Acta ; 1848(10 Pt A): 1974-80, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26074010

ABSTRACT

Integral membrane proteins (IMPs) are of therapeutic interest and are targeted by a majority of approved drugs. It's difficult to express, purify, and maintain the functional conformation of IMPs. Nanodisc presents a reliable method to solubilize and stabilize IMPs in detergent-free condition. In this study, we demonstrate the assembly and purification of a chimeric ion channel, KcsA-Kv1.3 Nanodisc. We further detail biophysical analysis of the assembled Nanodisc using analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and back scattering interferometry (BSI). AUC is employed to determine the molecular composition of the empty and KcsA-Kv1.3 Nanodisc. Combination of SPR and BSI overcomes each other's limitation and provides insight of equilibrium binding properties of peptide and small molecule ligands to KcsA-Kv1.3.


Subject(s)
Bacterial Proteins/chemistry , Kv1.3 Potassium Channel/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Potassium Channel Blockers/chemistry , Potassium Channels/chemistry , Amino Acid Sequence , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Kv1.3 Potassium Channel/antagonists & inhibitors , Molecular Sequence Data , Multiprotein Complexes/chemical synthesis , Multiprotein Complexes/ultrastructure , Protein Binding
14.
J Pharmacol Exp Ther ; 352(2): 327-37, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25502803

ABSTRACT

Phosphodiesterase 10A (PDE10A) inhibitors have therapeutic potential for the treatment of psychiatric and neurologic disorders, such as schizophrenia and Huntington's disease. One of the key requirements for successful central nervous system drug development is to demonstrate target coverage of therapeutic candidates in brain for lead optimization in the drug discovery phase and for assisting dose selection in clinical development. Therefore, we identified AMG 580 [1-(4-(3-(4-(1H-benzo[d]imidazole-2-carbonyl)phenoxy)pyrazin-2-yl)piperidin-1-yl)-2-fluoropropan-1-one], a novel, selective small-molecule antagonist with subnanomolar affinity for rat, primate, and human PDE10A. We showed that AMG 580 is suitable as a tracer for lead optimization to determine target coverage by novel PDE10A inhibitors using triple-stage quadrupole liquid chromatography-tandem mass spectrometry technology. [(3)H]AMG 580 bound with high affinity in a specific and saturable manner to both striatal homogenates and brain slices from rats, baboons, and human in vitro. Moreover, [(18)F]AMG 580 demonstrated prominent uptake by positron emission tomography in rats, suggesting that radiolabeled AMG 580 may be suitable for further development as a noninvasive radiotracer for target coverage measurements in clinical studies. These results indicate that AMG 580 is a potential imaging biomarker for mapping PDE10A distribution and ensuring target coverage by therapeutic PDE10A inhibitors in clinical studies.


Subject(s)
Benzimidazoles/pharmacology , Brain/enzymology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography/methods , Pyrazines/pharmacology , Animals , Benzimidazoles/pharmacokinetics , Brain/diagnostic imaging , Chromatography, Liquid , Female , Fluorine Radioisotopes , Humans , Male , Mass Spectrometry , Molecular Structure , Papio , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacokinetics , Protein Binding , Pyrazines/pharmacokinetics , Radioligand Assay , Rats, Sprague-Dawley , Species Specificity , Stereoisomerism , Surface Plasmon Resonance , Tissue Distribution
15.
J Biomol Screen ; 19(7): 1014-23, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24717911

ABSTRACT

In the nuclei of hepatocytes, glucokinase regulatory protein (GKRP) modulates the activity of glucokinase (GK), a key regulator of glucose homeostasis. Currently, direct activators of GK (GKAs) are in development for the treatment of type 2 diabetes. However, this approach is generally associated with a risk of hypoglycemia. To mitigate such risk, we target the GKRP regulation, which indirectly restores GK activity. Here we describe a screening strategy to look specifically for GKRP modulators, in addition to traditional GKAs. Two high-throughput screening campaigns were performed with our compound libraries using a luminescence assay format, one with GK alone and the other with a GK/GKRP complex in the presence of sorbitol-6-phosphate (S6P). By a subtraction method in the hit triage process of these campaigns, we discovered two close analogs that bind GKRP specifically with sub-µM potency to a site distinct from where fructose-1-phosphate binds. These small molecules are first-in-class allosteric modulators of the GK/GKRP interaction and are fully active even in the presence of S6P. Activation of GK by this particular mechanism, without altering the enzymatic profile, represents a novel pharmacologic modality of intervention in the GK/GKRP pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Drug Discovery/methods , Glucokinase/chemistry , Adenosine Triphosphate/chemistry , Allosteric Regulation , Animals , Blood Glucose/analysis , Calorimetry , Diabetes Mellitus, Type 2/drug therapy , Fluorescence , Fluorometry , Fructosephosphates/chemistry , Hepatocytes/metabolism , Hexosephosphates/chemistry , Homeostasis , Humans , Hypoglycemia/prevention & control , Inhibitory Concentration 50 , Luminescence , Protein Binding , Protein Conformation , Protein Interaction Mapping , Rats , Surface Plasmon Resonance
16.
J Am Soc Mass Spectrom ; 25(5): 742-50, 2014 May.
Article in English | MEDLINE | ID: mdl-24658798

ABSTRACT

This work explores the energetics of intermolecular H-bonds inside a hydrophobic protein cavity. Kinetic measurements were performed on the gaseous deprotonated ions (at the -7 charge state) of complexes of bovine ß-lactoglobulin (Lg) and three monohydroxylated analogs of palmitic acid (PA): 3-hydroxypalmitic acid (3-OHPA), 7-hydroxypalmitic acid (7-OHPA), and 16-hydroxypalmitic acid (16-OHPA). From the increase in the activation energy for the dissociation of the (Lg + X-OHPA)7⁻ ions, compared with that of the (Lg + PA)7⁻ ion, it is concluded that the ­OH groups of the X-OHPA ligands participate in strong (5-11 kcal mol⁻¹) intermolecular H-bonds in the hydrophobic cavity of Lg. The results of molecular dynamics (MD) simulations suggest that the ­OH groups of 3-OHPA and 16-OHPA act as H-bond donors and interact with backbone carbonyl oxygens, whereas the ­OH group of 7-OHPA acts as both H-bond donor and acceptor with nearby side chains. The capacity for intermolecular H-bonds within the Lg cavity, as suggested by the gas-phase measurements, does not necessarily lead to enhanced binding in aqueous solution. The association constant (Ka) measured for 7-OHPA [(2.3 ± 0.2) × 105 M⁻¹] is similar to the value for the PA [(3.8 ± 0.1) × 105 M⁻¹]; Ka for 3-OHPA [(1.1 ± 0.3) × 106 M⁻¹] is approximately three-times larger, whereas Ka for 16-OHPA [(2.3 ± 0.2) × 104 M⁻¹] is an order of magnitude smaller. Taken together, the results of this study suggest that the energetic penalty to desolvating the ligand ­OH groups, which is necessary for complex formation, is similar in magnitude to the energetic contribution of the intermolecular H-bonds.


Subject(s)
Lactoglobulins/chemistry , Models, Molecular , Palmitic Acid/chemistry , Animals , Binding Sites , Cattle , Energy Transfer , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kinetics , Lactoglobulins/metabolism , Ligands , Molecular Dynamics Simulation , Palmitic Acid/metabolism , Palmitic Acids/chemistry , Palmitic Acids/metabolism , Protein Conformation , Protein Stability , Spectrometry, Mass, Electrospray Ionization , Surface Plasmon Resonance , Volatilization
17.
J Med Chem ; 57(2): 309-24, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24405172

ABSTRACT

Small molecule activators of glucokinase have shown robust efficacy in both preclinical models and humans. However, overactivation of glucokinase (GK) can cause excessive glucose turnover, leading to hypoglycemia. To circumvent this adverse side effect, we chose to modulate GK activity by targeting the endogenous inhibitor of GK, glucokinase regulatory protein (GKRP). Disrupting the GK-GKRP complex results in an increase in the amount of unbound cytosolic GK without altering the inherent kinetics of the enzyme. Herein we report the identification of compounds that efficiently disrupt the GK-GKRP interaction via a previously unknown binding pocket. Using a structure-based approach, the potency of the initial hit was improved to provide 25 (AMG-1694). When dosed in ZDF rats, 25 showed both a robust pharmacodynamic effect as well as a statistically significant reduction in glucose. Additionally, hypoglycemia was not observed in either the hyperglycemic or normal rats.


Subject(s)
Carrier Proteins/metabolism , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Piperazines/chemistry , Animals , Binding Sites , Carrier Proteins/chemistry , Crystallography, X-Ray , Glucokinase/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , High-Throughput Screening Assays , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacology , Piperazines/adverse effects , Piperazines/pharmacology , Protein Conformation , Protein Transport , Rats , Rats, Zucker , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/adverse effects , Sulfonamides/chemistry , Sulfonamides/pharmacology
18.
J Med Chem ; 57(2): 325-38, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24405213

ABSTRACT

In the previous report , we described the discovery and optimization of novel small molecule disruptors of the GK-GKRP interaction culminating in the identification of 1 (AMG-1694). Although this analogue possessed excellent in vitro potency and was a useful tool compound in initial proof-of-concept experiments, high metabolic turnover limited its advancement. Guided by a combination of metabolite identification and structure-based design, we have successfully discovered a potent and metabolically stable GK-GKRP disruptor (27, AMG-3969). When administered to db/db mice, this compound demonstrated a robust pharmacodynamic response (GK translocation) as well as statistically significant dose-dependent reductions in fed blood glucose levels.


Subject(s)
Carrier Proteins/metabolism , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Piperazines/chemical synthesis , Sulfonamides/chemical synthesis , Alkynes/chemical synthesis , Alkynes/pharmacokinetics , Alkynes/pharmacology , Animals , Blood Glucose/metabolism , Carrier Proteins/chemistry , Glucokinase/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Mice , Microsomes, Liver/metabolism , Models, Molecular , Morpholines/chemical synthesis , Morpholines/pharmacokinetics , Morpholines/pharmacology , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Binding , Protein Transport , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
19.
Nature ; 504(7480): 437-40, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24226772

ABSTRACT

Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic ß-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Adaptor Proteins, Signal Transducing , Animals , Blood Glucose/metabolism , Carrier Proteins/metabolism , Cell Nucleus/enzymology , Crystallography, X-Ray , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/enzymology , Disease Models, Animal , Hepatocytes , Humans , Hyperglycemia/blood , Hyperglycemia/drug therapy , Hyperglycemia/enzymology , Hypoglycemic Agents/chemistry , Liver/cytology , Liver/enzymology , Liver/metabolism , Male , Models, Molecular , Organ Specificity , Phosphorylation/drug effects , Piperazines/chemistry , Piperazines/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Binding/drug effects , Protein Transport/drug effects , Rats , Rats, Wistar , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
20.
J Am Chem Soc ; 134(41): 17059-67, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-22991965

ABSTRACT

Restoration of p53 function through the disruption of the MDM2-p53 protein complex is a promising strategy for the treatment of various types of cancer. Here, we present kinetic, thermodynamic, and structural rationale for the remarkable potency of a new class of MDM2 inhibitors, the piperidinones. While these compounds bind to the same site as previously reported for small molecule inhibitors, such as the Nutlins, data presented here demonstrate that the piperidinones also engage the N-terminal region (residues 10-16) of human MDM2, in particular, Val14 and Thr16. This portion of MDM2 is unstructured in both the apo form of the protein and in MDM2 complexes with p53 or Nutlin, but adopts a novel ß-strand structure when complexed with the piperidinones. The ordering of the N-terminus upon binding of the piperidinones extends the current model of MDM2-p53 interaction and provides a new route to rational design of superior inhibitors.


Subject(s)
Piperidines/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Crystallography, X-Ray , Humans , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...