Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemistryOpen ; 11(5): e202100153, 2022 May.
Article in English | MEDLINE | ID: mdl-34931474

ABSTRACT

We present a combined experimental and theoretical study of the ultrafast transient absorption spectroscopy results of a {Ni2 Dy2 }-compound in DMF, which can be considered as a prototypic molecule for single molecule magnets. We apply state-of-the-art ab initio quantum chemistry to quantitatively describe the optical properties of an inorganic complex system comprising ten atoms to form the chromophoric unit, which is further stabilized by surrounding ligands. Two different basis sets are used for the calculations to specifically identify two dominant peaks in the ground state. Furthermore, we theoretically propagate the compound's correlated many-body wavefunction under the influence of a laser pulse as well as relaxation processes and compare against the time-resolved absorption spectra. The experimental data can be described with a time constant of several hundreds of femtoseconds attributed to vibrational relaxation and trapping into states localized within the band gap. A second time constant is ascribed to the excited state while trap states show lifetimes on a longer timescale. The theoretical propagation is performed with the density-matrix formalism and the Lindblad superoperator, which couples the system to a thermal bath, allowing us to extract relaxation times from first principles.

2.
Phys Chem Chem Phys ; 20(16): 10713-10720, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29340390

ABSTRACT

Early-time dynamics of nitroaromatics and its coressponding bases can give valuable insights into photo-induced reactions relevant to atmospheric and environmental processes. In this work, femtosecond broadband absorption spectroscopy between 350 and 700 nm has been applied to explore the ultrafast dynamics of o-, p- and m-nitrophenol anions (NP-) in basic organic and aqueous solution. Excitation at 400 nm promotes these compounds into the first bright electronic singlet state, which is a charge-transfer state. A surprising finding for all nitrophenolates was a characteristic, spectrally broad stimulated emission (SE) from the electronically excited state into the ground state. The corresponding lifetime was on the order of a few hundred femtoseconds for o- and p-NP- while it was roughly ten times larger for m-NP-. In line with earlier observations, the SE is governed by an out-of-plane torsional motion of the nitro group, leading to a close energetic approach of the relevant electronically excited singlet and ground states. Subsequent dynamics can be assigned to excited state absorption and ground state relaxation due to energy dissipation of the vibrational modes to the solvent that occur for up to several tens of picoseconds. No longer-lasting transient absorption (TA) was found; instead, a complete recovery of the ground state bleaching was observed indicating that triplet state relaxation is either not significantly involved in this spectral part or shifted to other regions. In the aqueous system, time constants for all processes are much smaller than in organic solution, a fact that can be explained by the larger dipole moment of the solvent and the correspondingly stronger intermolecular coupling between NP- and the aqueous solvent.

SELECTION OF CITATIONS
SEARCH DETAIL
...