Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inflamm Bowel Dis ; 23(12): 2121-2133, 2017 12.
Article in English | MEDLINE | ID: mdl-29084077

ABSTRACT

BACKGROUND: Homozygous HLA-DR4/I-E transgenic mice (tgm) spontaneously developed colitis similar to human ulcerative colitis. We explored whether endoplasmic reticulum stress in colonic epithelial cells due to overexpression of HLA-DR4/I-E was involved in the pathogenesis of colitis. METHODS: Major histocompatibility complex class II transactivator-knockout (CIITAKO) background tgm were established to test the involvement of HLA-DR4/I-E expression in the pathogenesis of colitis. Histological and cellular analyses were performed and the effect of oral administration of the molecular chaperone tauroursodeoxycholic acid (TUDCA) and antibiotics were investigated. IgA content of feces and serum and presence of IgA-coated fecal bacteria were also investigated. RESULTS: Aberrantly accumulated HLA-DR4/I-E molecules in colonic epithelial cells were observed only in the colitic homozygous tgm, which was accompanied by upregulation of the endoplasmic reticulum stress marker Binding immunoglobulin protein (BiP) and reduced mucus. Homozygous tgm with CIITAKO, and thus absent of HLA-DR4/I-E expression, did not develop colitis. Oral administration of TUDCA to homozygotes reduced HLA-DR4/I-E and BiP expression in colonic epithelial cells and restored the barrier function of the intestinal tract. The IgA content of feces and serum, and numbers of IgA-coated fecal bacteria were higher in the colitic tgm, and antibiotic administration suppressed the expression of HLA-DR4/I-E and colitis. CONCLUSIONS: The pathogenesis of the colitis observed in the homozygous tgm was likely due to endoplasmic reticulum stress, resulting in goblet cell damage and compromised mucus production in the colonic epithelial cells in which HLA-DR4/I-E molecules were heavily accumulated. Commensal bacteria seemed to be involved in the accumulation of HLA-DR4/I-E, leading to development of the colitis.


Subject(s)
Colitis/pathology , Colon/microbiology , Epithelial Cells/metabolism , HLA-DR4 Antigen/metabolism , Animals , Bacteria , CD4-Positive T-Lymphocytes/immunology , Epithelial Cells/pathology , Female , HLA-DR4 Antigen/genetics , Homozygote , Immunoglobulin A/analysis , Male , Mice , Mice, Transgenic , Taurochenodeoxycholic Acid/administration & dosage
2.
PLoS One ; 8(12): e84908, 2013.
Article in English | MEDLINE | ID: mdl-24386437

ABSTRACT

Reports have shown that activation of tumor-specific CD4(+) helper T (Th) cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05) transgenic mice (Tgm), since this HLA-DR allele is most frequent (13.6%) in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA)-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-E(d), where I-E(d) α1 and ß1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-E(d) has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC) followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191-213 peptide from a new TAA DEPDC1 overexpressed in bladder cancer induced strong Th-cell responses both in Tgm and in PBMCs from an HLA-DR4-positive donor. Thus, the HLA-DR4 Tgm combined with computer algorithm was useful for preliminary screening of candidate peptides for vaccination.


Subject(s)
Antigens, Neoplasm/immunology , Epitopes, T-Lymphocyte/immunology , HLA-DR4 Antigen/immunology , Neoplasm Proteins/immunology , Peptides/immunology , T-Lymphocytes, Helper-Inducer/immunology , Urinary Bladder Neoplasms/immunology , Animals , Antigens, Neoplasm/genetics , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Epitopes, T-Lymphocyte/genetics , HLA-DR4 Antigen/genetics , Humans , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Peptides/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...