Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nat Commun ; 15(1): 5791, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987295

ABSTRACT

Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34+ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders.


Subject(s)
Extracellular Matrix , Hematopoietic Stem Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Nestin , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Animals , Nestin/metabolism , Nestin/genetics , Extracellular Matrix/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Stem Cell Niche , Hydrogels/chemistry , Bioengineering/methods , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hematopoietic Stem Cell Transplantation , Antigens, CD34/metabolism , Collagen Type I/metabolism , Cell Differentiation , Mice, Inbred C57BL
2.
EMBO J ; 43(14): 2878-2907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816652

ABSTRACT

In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αß-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.


Subject(s)
Antigens, Ly , Receptors, Antigen, T-Cell, gamma-delta , Tumor Necrosis Factor Receptor Superfamily, Member 7 , Animals , Mice , Antigens, Ly/metabolism , Antigens, Ly/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Interleukin-27/metabolism , Interleukin-27/genetics , Cell Differentiation/immunology , Mice, Inbred C57BL , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
3.
Mol Oncol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459421

ABSTRACT

Acute myeloid leukaemia (AML) is a clonal haematological malignancy affecting the myeloid lineage, with generally poor patient outcomes owing to the lack of targeted therapies. The histone lysine demethylase 4A (KDM4A) has been established as a novel therapeutic target in AML, due to its selective oncogenic role within leukaemic cells. We identify that the transcription factor nuclear factor of activated T cells 2 (NFATC2) is a novel binding and transcriptional target of KDM4A in the human AML THP-1 cell line. Furthermore, cytogenetically diverse AML cell lines, including THP-1, were dependent on NFATC2 for colony formation in vitro, highlighting a putative novel mechanism of AML oncogenesis. Our study demonstrates that NFATC2 maintenance of cell cycle progression in human AML cells was driven primarily by CCND1. Through RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq), NFATc2 was shown to bind to the promoter region of genes involved in oxidative phosphorylation and subsequently regulate their gene expression in THP-1 cells. Furthermore, our data show that NFATC2 shares transcriptional targets with the transcription factor c-MYC, with MYC knockdown phenocopying NFATC2 knockdown. These data suggest a newly identified co-ordinated role for NFATC2 and MYC in the maintenance of THP-1 cell function, indicative of a potential means of therapeutic targeting in human AML.

4.
Nat Commun ; 15(1): 651, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246924

ABSTRACT

Whilst it is recognised that targeting self-renewal is an effective way to functionally impair the quiescent leukaemic stem cells (LSC) that persist as residual disease in chronic myeloid leukaemia (CML), developing therapeutic strategies to achieve this have proved challenging. We demonstrate that the regulatory programmes of quiescent LSC in chronic phase CML are similar to that of embryonic stem cells, pointing to a role for wild type p53 in LSC self-renewal. In support of this, increasing p53 activity in primitive CML cells using an MDM2 inhibitor in combination with a tyrosine kinase inhibitor resulted in reduced CFC outputs and engraftment potential, followed by loss of multilineage priming potential and LSC exhaustion when combination treatment was discontinued. Our work provides evidence that targeting LSC self-renewal is exploitable in the clinic to irreversibly impair quiescent LSC function in CML residual disease - with the potential to enable more CML patients to discontinue therapy and remain in therapy-free remission.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Cell Division , Embryonic Stem Cells , Neoplasm, Residual , Tumor Suppressor Protein p53/genetics
5.
Leukemia ; 37(12): 2414-2425, 2023 12.
Article in English | MEDLINE | ID: mdl-37775560

ABSTRACT

Targeted deletion of Raptor, a component of mechanistic target of rapamycin complex 1 (mTORC1), reveals an essential role for mTORC1 in initiation/maintenance of leukemia in a CLL model, resulting from a failure for haemopoietic stem/progenitor cells (HSPCs) to commit to the B cell lineage. Induction of Raptor-deficiency in NSG mice transplanted with Mx1-Raptor CLL progenitor cells (PKCα-KR-transduced HSPCs) after disease establishment revealed a reduction in CLL-like disease load and a significant increase in survival in the mice. Interestingly in an aggressive CLL-like disease model, rapamycin treatment reduced disease burden more effectively than AZD2014 (dual mTORC1/2 inhibitor), indicating a skew towards mTORC1 sensitivity with more aggressive disease. Rapamycin, but not ibrutinib, efficiently targeted the eEF2/eEF2K translation elongation regulatory axis, downstream of mTORC1, resulting in eEF2 inactivation through induction of eEF2T56 phosphorylation. mTOR inhibitor treatment of primary patient CLL cells halted proliferation, at least in part through modulation of eEF2K/eEF2 phosphorylation and expression, reduced protein synthesis and inhibited expression of MCL1, Cyclin A and Cyclin D2. Our studies highlight the importance of translation elongation as a driver of disease progression and identify inactivation of eEF2 activity as a novel therapeutic target for blocking CLL progression.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Animals , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Signal Transduction , Sirolimus , Phosphorylation , Disease Progression
6.
Nat Commun ; 14(1): 4634, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591854

ABSTRACT

Deregulated oxidative metabolism is a hallmark of leukaemia. While tyrosine kinase inhibitors (TKIs) such as imatinib have increased survival of chronic myeloid leukaemia (CML) patients, they fail to eradicate disease-initiating leukemic stem cells (LSCs). Whether TKI-treated CML LSCs remain metabolically deregulated is unknown. Using clinically and physiologically relevant assays, we generate multi-omics datasets that offer unique insight into metabolic adaptation and nutrient fate in patient-derived CML LSCs. We demonstrate that LSCs have increased pyruvate anaplerosis, mediated by increased mitochondrial pyruvate carrier 1/2 (MPC1/2) levels and pyruvate carboxylase (PC) activity, in comparison to normal counterparts. While imatinib reverses BCR::ABL1-mediated LSC metabolic reprogramming, stable isotope-assisted metabolomics reveals that deregulated pyruvate anaplerosis is not affected by imatinib. Encouragingly, genetic ablation of pyruvate anaplerosis sensitises CML cells to imatinib. Finally, we demonstrate that MSDC-0160, a clinical orally-available MPC1/2 inhibitor, inhibits pyruvate anaplerosis and targets imatinib-resistant CML LSCs in robust pre-clinical CML models. Collectively these results highlight pyruvate anaplerosis as a persistent and therapeutically targetable vulnerability in imatinib-treated CML patient-derived samples.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Pyruvic Acid , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Acclimatization , Biological Assay
7.
Front Immunol ; 14: 1179101, 2023.
Article in English | MEDLINE | ID: mdl-37275916

ABSTRACT

Forkhead box (FOX) class O (FOXO) proteins are a dynamic family of transcription factors composed of four family members: FOXO1, FOXO3, FOXO4 and FOXO6. As context-dependent transcriptional activators and repressors, the FOXO family regulates diverse cellular processes including cell cycle arrest, apoptosis, metabolism, longevity and cell fate determination. A central pathway responsible for negative regulation of FOXO activity is the phosphatidylinositol-3-kinase (PI3K)-AKT signalling pathway, enabling cell survival and proliferation. FOXO family members can be further regulated by distinct kinases, both positively (e.g., JNK, AMPK) and negatively (e.g., ERK-MAPK, CDK2), with additional post-translational modifications further impacting on FOXO activity. Evidence has suggested that FOXOs behave as 'bona fide' tumour suppressors, through transcriptional programmes regulating several cellular behaviours including cell cycle arrest and apoptosis. However, an alternative paradigm has emerged which indicates that FOXOs operate as mediators of cellular homeostasis and/or resistance in both 'normal' and pathophysiological scenarios. Distinct FOXO family members fulfil discrete roles during normal B cell maturation and function, and it is now clear that FOXOs are aberrantly expressed and mutated in discrete B-cell malignancies. While active FOXO function is generally associated with disease suppression in chronic lymphocytic leukemia for example, FOXO expression is associated with disease progression in diffuse large B cell lymphoma, an observation also seen in other cancers. The opposing functions of the FOXO family drives the debate about the circumstances in which FOXOs favour or hinder disease progression, and whether targeting FOXO-mediated processes would be effective in the treatment of B-cell malignancies. Here, we discuss the disparate roles of FOXO family members in B lineage cells, the regulatory events that influence FOXO function focusing mainly on post-translational modifications, and consider the potential for future development of therapies that target FOXO activity.


Subject(s)
Forkhead Transcription Factors , Neoplasms , Humans , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Neoplasms/pathology , Gene Expression Regulation , Signal Transduction , Cell Differentiation
8.
Cancers (Basel) ; 14(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36497487

ABSTRACT

B cell antigen receptor (BCR) signalling competence is critical for the pathogenesis of chronic lymphocytic leukaemia (CLL). Defining key proteins that facilitate these networks aid in the identification of targets for therapeutic exploitation. We previously demonstrated that reduced PKCα function in mouse hematopoietic stem/progenitor cells (HPSCs) resulted in PKCßII upregulation and generation of a poor-prognostic CLL-like disease. Here, prkcb knockdown in HSPCs leads to reduced survival of PKCα-KR-expressing CLL-like cells, concurrent with reduced expression of the leukemic markers CD5 and CD23. SP1 promotes elevated expression of prkcb in PKCα-KR expressing cells enabling leukemogenesis. Global gene analysis revealed an upregulation of genes associated with B cell activation in PKCα-KR expressing cells, coincident with upregulation of PKCßII: supported by activation of key signalling hubs proximal to the BCR and elevated proliferation. Ibrutinib (BTK inhibitor) or enzastaurin (PKCßII inhibitor) treatment of PKCα-KR expressing cells and primary CLL cells showed similar patterns of Akt/mTOR pathway inhibition, supporting the role for PKCßII in maintaining proliferative signals in our CLL mouse model. Ibrutinib or enzastaurin treatment also reduced PKCα-KR-CLL cell migration towards CXCL12. Overall, we demonstrate that PKCß expression facilitates leukemogenesis and identify that BCR-mediated signalling is a key driver of CLL development in the PKCα-KR model.

9.
Sci Transl Med ; 13(613): eabd5016, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34586834

ABSTRACT

Inhibition of autophagy has been proposed as a potential therapy for individuals with cancer. However, current lysosomotropic autophagy inhibitors have demonstrated limited efficacy in clinical trials. Therefore, validation of novel specific autophagy inhibitors using robust preclinical models is critical. In chronic myeloid leukemia (CML), minimal residual disease is maintained by persistent leukemic stem cells (LSCs), which drive tyrosine kinase inhibitor (TKI) resistance and patient relapse. Here, we show that deletion of autophagy-inducing kinase ULK1 (unc-51­like autophagy activating kinase 1) reduces growth of cell line and patient-derived xenografted CML cells in mouse models. Using primitive cells, isolated from individuals with CML, we demonstrate that pharmacological inhibition of ULK1 selectively targets CML LSCs ex vivo and in vivo, when combined with TKI treatment. The enhanced TKI sensitivity after ULK1-mediated autophagy inhibition is driven by increased mitochondrial respiration and loss of quiescence and points to oxidative stress­induced differentiation of CML LSCs, proposing an alternative strategy for treating patients with CML.


Subject(s)
Autophagy , Oxidative Stress , Autophagy-Related Protein-1 Homolog/metabolism , Cell Differentiation , Stem Cells/metabolism
11.
Cell Death Dis ; 12(6): 573, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083515

ABSTRACT

Epigenomic dysregulation is a common pathological feature in human hematological malignancies. H3K9me3 emerges as an important epigenomic marker in acute myeloid leukemia (AML). Its associated methyltransferases, such as SETDB1, suppress AML leukemogenesis, whilst H3K9me3 demethylases KDM4C is required for mixed-lineage leukemia rearranged AML. However, the specific role and molecular mechanism of action of another member of the KDM4 family, KDM4A has not previously been clearly defined. In this study, we delineated and functionally validated the epigenomic network regulated by KDM4A. We show that selective loss of KDM4A is sufficient to induce apoptosis in a broad spectrum of human AML cells. This detrimental phenotype results from a global accumulation of H3K9me3 and H3K27me3 at KDM4A targeted genomic loci thereby causing downregulation of a KDM4A-PAF1 controlled transcriptional program essential for leukemogenesis, distinct from that of KDM4C. From this regulatory network, we further extracted a KDM4A-9 gene signature enriched with leukemia stem cell activity; the KDM4A-9 score alone or in combination with the known LSC17 score, effectively stratifies high-risk AML patients. Together, these results establish the essential and unique role of KDM4A for AML self-renewal and survival, supporting further investigation of KDM4A and its targets as a potential therapeutic vulnerability in AML.


Subject(s)
Cell Self Renewal/genetics , Cell Survival/genetics , Epigenomics/methods , Histone Demethylases/metabolism , Leukemia, Myeloid, Acute/genetics , Animals , Apoptosis , Humans , Mice
12.
Sci Rep ; 10(1): 13156, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753714

ABSTRACT

Protein kinase Cß (PKCß) expressed in mammalian cells as two splice variants, PKCßI and PKCßII, functions in the B cell receptor (BCR) signaling pathway and contributes to B cell development. We investigated the relative role of PKCßII in B cells by generating transgenic mice where expression of the transgene is directed to these cells using the Eµ promoter (Eµ-PKCßIItg). Our findings demonstrate that homozygous Eµ-PKCßIItg mice displayed a shift from IgD+IgMdim toward IgDdimIgM+ B cell populations in spleen, peritoneum and peripheral blood. Closer examination of these tissues revealed respective expansion of marginal zone (MZ)-like B cells (IgD+IgM+CD43negCD21+CD24+), increased populations of B-1 cells (B220+IgDdimIgM+CD43+CD24+CD5+), and higher numbers of immature B cells (IgDdimIgMdimCD21neg) at the expense of mature B cells (IgD+IgM+CD21+). Therefore, the overexpression of PKCßII, which is a phenotypic feature of chronic lymphocytic leukaemia cells, can skew B cell development in mice, most likely as a result of a regulatory influence on BCR signaling.


Subject(s)
B-Lymphocytes/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Neoplasm Proteins/biosynthesis , Protein Kinase C beta/biosynthesis , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , B-Lymphocytes/pathology , Immunoglobulin D/genetics , Immunoglobulin D/metabolism , Immunoglobulin M/genetics , Immunoglobulin M/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Protein Kinase C beta/genetics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
13.
J Vis Exp ; (152)2019 10 23.
Article in English | MEDLINE | ID: mdl-31710039

ABSTRACT

Nuclear export of macromolecules is often deregulated in cancer cells. Tumor suppressor proteins, such as p53, can be rendered inactive due to aberrant cellular localization disrupting their mechanism of action. The survival of chronic lymphocytic leukaemia (CLL) cells, among other cancer cells, is assisted by the deregulation of nuclear to cytoplasmic shuttling, at least in part through deregulation of the transport receptor XPO1 and the constitutive activation of PI3K-mediated signaling pathways. It is essential to understand the role of individual proteins in the context of their intracellular location to gain a deeper understanding of the role of such proteins in the pathobiology of the disease. Furthermore, identifying processes that underlie cell stimulation and the mechanism of action of specific pharmacological inhibitors, in the context of subcellular protein trafficking, will provide a more comprehensive understanding of the mechanism of action. The protocol described here enables the optimization and subsequent efficient generation of nuclear and cytoplasmic fractions from primary chronic lymphocytic leukemia cells. These fractions can be used to determine changes in protein trafficking between the nuclear and cytoplasmic fractions upon cell stimulation and drug treatment. The data can be quantified and presented in parallel with immunofluorescent images, thus providing robust and quantifiable data.


Subject(s)
Cell Fractionation/methods , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Protein Transport/physiology , Active Transport, Cell Nucleus , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Cytosol/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Nuclear Proteins/metabolism , Signal Transduction
14.
Sci Rep ; 9(1): 16917, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729420

ABSTRACT

Mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates phosphoinositide-3-kinase (PI3K)/AKT signalling. This pathway is involved in a plethora of cellular functions including protein and lipid synthesis, cell migration, cell proliferation and apoptosis. In this study, we proposed to delineate the role of mTORC1 in haemopoietic lineage commitment using knock out (KO) mouse and cell line models. Mx1-cre and Vav-cre expression systems were used to specifically target Raptorfl/fl (mTORC1), either in all tissues upon poly(I:C) inoculation, or specifically in haemopoietic stem cells, respectively. Assessment of the role of mTORC1 during the early stages of development in Vav-cre+Raptorfl/fl mice, revealed that these mice do not survive post birth due to aberrations in erythropoiesis resulting from an arrest in development at the megakaryocyte-erythrocyte progenitor stage. Furthermore, Raptor-deficient mice exhibited a block in B cell lineage commitment. The essential role of Raptor (mTORC1) in erythrocyte and B lineage commitment was confirmed in adult Mx1-cre+Raptorfl/fl mice upon cre-recombinase induction. These studies were supported by results showing that the expression of key lineage commitment regulators, GATA1, GATA2 and PAX5 were dysregulated in the absence of mTORC1-mediated signals. The regulatory role of mTOR during erythropoiesis was confirmed in vitro by demonstrating a reduction of K562 cell differentiation towards RBCs in the presence of established mTOR inhibitors. While mTORC1 plays a fundamental role in promoting RBC development, we showed that mTORC2 has an opposing role, as Rictor-deficient progenitor cells exhibited an elevation in RBC colony formation ex vivo. Collectively, our data demonstrate a critical role played by mTORC1 in regulating the haemopoietic cell lineage commitment.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation , Erythropoiesis , Lymphopoiesis , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Biomarkers , Cell Line, Tumor , Cell Lineage , Humans , Mice , Mice, Knockout , Models, Biological , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
15.
Leukemia ; 33(4): 981-994, 2019 04.
Article in English | MEDLINE | ID: mdl-30185934

ABSTRACT

In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin-Sca-1+c-kit+CD48-CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence.


Subject(s)
Aminoquinolines/pharmacology , Autophagy , Drug Resistance, Neoplasm/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/pathology , Polyamines/pharmacology , Animals , Apoptosis , Cell Proliferation , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology , Tumor Cells, Cultured
16.
Clin Cancer Res ; 25(5): 1574-1587, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30559170

ABSTRACT

PURPOSE: To determine whether inhibition of mTOR kinase-mediated signaling represents a valid therapeutic approach for chronic lymphocytic leukemia (CLL). EXPERIMENTAL DESIGN: Stratification of mTOR activity was carried out in patients with primary CLL samples and an aggressive CLL-like mouse model. The potency of dual mTOR inhibitor AZD8055 to induce apoptosis in primary CLL cells was assessed in the presence/absence of B-cell receptor (BCR) ligation. Furthermore, we addressed the molecular and functional impact of dual mTOR inhibition in combination with BTK inhibitor ibrutinib. RESULTS: Differential regulation of basal mTORC1 activity was observed in poor prognostic CLL samples, with elevated p4EBP1T37/46 and decreased p70S6 kinase activity, suggesting that dual mTORC1/2 inhibitors may exhibit improved response in poor prognostic CLL compared with rapalogs. AZD8055 treatment of primary CLL cells significantly reduced CLL survival in vitro compared with rapamycin, preferentially targeting poor prognostic subsets and overcoming BCR-mediated survival advantages. Furthermore, AZD8055, and clinical analog AZD2014, significantly reduced CLL tumor load in mice. AKT substrate FOXO1, while overexpressed in CLL cells of poor prognostic patients in LN biopsies, peripheral CLL cells, and mouse-derived CLL-like cells, appeared to be inactive. AZD8055 treatment partially reversed FOXO1 inactivation downstream of BCR crosslinking, significantly inhibiting FOXO1T24 phosphorylation in an mTORC2-AKT-dependent manner, to promote FOXO1 nuclear localization, activity, and FOXO1-mediated gene regulation. FOXO1 activity was further significantly enhanced on combining AZD8055 with ibrutinib. CONCLUSIONS: Our studies demonstrate that dual mTOR inhibitors show promise as future CLL therapies, particularly in combination with ibrutinib.


Subject(s)
Forkhead Box Protein O1/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, Antigen, B-Cell/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Synergism , Female , Forkhead Box Protein O1/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Male , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mice, Transgenic , Prognosis , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Treatment Outcome , Xenograft Model Antitumor Assays
17.
Biochem Soc Trans ; 46(5): 1313-1324, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30154096

ABSTRACT

The serine/threonine protein kinase mechanistic target of rapamycin (mTOR) has been implicated in the regulation of an array of cellular functions including protein and lipid synthesis, proliferation, cell size and survival. Here, we describe the role of mTOR during haemopoiesis within the context of mTORC1 and mTORC2, the distinct complexes in which it functions. The use of conditional transgenic mouse models specifically targeting individual mTOR signalling components, together with selective inhibitors, have generated a significant body of research emphasising the critical roles played by mTOR, and individual mTOR complexes, in haemopoietic lineage commitment and development. This review will describe the profound role of mTOR in embryogenesis and haemopoiesis, underscoring the importance of mTORC1 at the early stages of haemopoietic cell development, through modulation of stem cell potentiation and self-renewal, and erythroid and B cell lineage commitment. Furthermore, the relatively discrete role of mTORC2 in haemopoiesis will be explored during T cell development and B cell maturation. Collectively, this review aims to highlight the functional diversity of mTOR signalling and underline the importance of this pathway in haemopoiesis.


Subject(s)
Cell Lineage , Cell Proliferation , Hematopoiesis , Mice, Transgenic , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , B-Lymphocytes/cytology , Cell Survival , Erythrocytes/cytology , Hematopoietic Stem Cells/cytology , Humans , Lipids/chemistry , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mice, Knockout , Myeloid Cells/cytology , Stem Cells/cytology , T-Lymphocytes/cytology
18.
Immunol Lett ; 196: 74-79, 2018 04.
Article in English | MEDLINE | ID: mdl-29408410

ABSTRACT

Mechanistic target for rapamycin (mTOR) is a serine/threonine protein kinase that forms two distinct complexes mTORC1 and mTORC2, integrating mitogen and nutrient signals to regulate cell survival and proliferation; processes which are commonly deregulated in human cancers. mTORC1 and mTORC2 have divergent molecular associations and cellular functions: mTORC1 regulates in mRNA translation and protein synthesis, while mTORC2 is involved in the regulation of cellular survival and metabolism. Through AKT phosphorylation/activation, mTORC2 has also been reported to regulate cell migration. Recent attention has focused on the aberrant activation of the PI3K/mTOR pathway in B cell malignancies and there is growing evidence for its involvement in disease pathogenesis, due to its location downstream of other established novel drug targets that intercept B cell receptor (BCR) signals. Shared pharmacological features of BCR signal inhibitors include a striking "lymphocyte redistribution" effect whereby patients experience a sharp increase in lymphocyte count on initiation of therapy followed by a steady decline. Chronic lymphocytic leukemia (CLL) serves as a paradigm for migration studies as lymphocytes are among the most widely travelled cells in the body, a product of their role in immunological surveillance. The subversion of normal lymphocyte movement in CLL is being elucidated; this review aims to describe the migration impairment which occurs as part of the wider context of cancer cell migration defects, with a focus on the role of mTOR in mediating migration effects downstream of BCR ligation and other microenvironmental signals.


Subject(s)
B-Lymphocytes/immunology , Cell Movement/immunology , Signal Transduction/immunology , TOR Serine-Threonine Kinases/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/pathology , Cell Movement/drug effects , Humans , Immunosuppressive Agents/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Models, Immunological , Morpholines/pharmacology , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
19.
Nat Med ; 23(10): 1234-1240, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28920959

ABSTRACT

Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs). Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell-enriched (CD34+ and CD34+CD38-) and differentiated (CD34-) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope-assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both in vitro and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Minocycline/analogs & derivatives , Mitochondria/drug effects , Neoplastic Stem Cells/drug effects , Oxidative Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Blotting, Western , Cell Survival/drug effects , Chromatography, Liquid , Drug Therapy, Combination , Female , Humans , Hypoglycemic Agents/pharmacology , Imatinib Mesylate/therapeutic use , In Vitro Techniques , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mass Spectrometry , Metabolomics , Mice , Mice, Inbred NOD , Minocycline/pharmacology , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Phenformin/pharmacology , Protein Kinase Inhibitors/therapeutic use , Reverse Transcriptase Polymerase Chain Reaction , Tigecycline , Tumor Cells, Cultured , Tumor Stem Cell Assay , Up-Regulation , Xenograft Model Antitumor Assays
20.
Blood ; 129(2): 199-208, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27793879

ABSTRACT

Targeting the fusion oncoprotein BCR-ABL with tyrosine kinase inhibitors has significantly affected chronic myeloid leukemia (CML) treatment, transforming the life expectancy of patients; however the risk for relapse remains, due to persistence of leukemic stem cells (LSCs). Therefore it is imperative to explore the mechanisms that result in LSC survival and develop new therapeutic approaches. We now show that major histocompatibility complex (MHC)-II and its master regulator class II transactivator (CIITA) are downregulated in CML compared with non-CML stem/progenitor cells in a BCR-ABL kinase-independent manner. Interferon γ (IFN-γ) stimulation resulted in an upregulation of CIITA and MHC-II in CML stem/progenitor cells; however, the extent of IFN-γ-induced MHC-II upregulation was significantly lower than when compared with non-CML CD34+ cells. Interestingly, the expression levels of CIITA and MHC-II significantly increased when CML stem/progenitor cells were treated with the JAK1/2 inhibitor ruxolitinib (RUX). Moreover, mixed lymphocyte reactions revealed that exposure of CD34+ CML cells to IFN-γ or RUX significantly enhanced proliferation of the responder CD4+CD69+ T cells. Taken together, these data suggest that cytokine-driven JAK-mediated signals, provided by CML cells and/or the microenvironment, antagonize MHC-II expression, highlighting the potential for developing novel immunomodulatory-based therapies to enable host-mediated immunity to assist in the detection and eradication of CML stem/progenitor cells.


Subject(s)
Histocompatibility Antigens Class II/biosynthesis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Neoplastic Stem Cells/immunology , Tumor Escape/immunology , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , Down-Regulation , Female , Flow Cytometry , Gene Expression Regulation/immunology , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Lymphocyte Culture Test, Mixed , Male , Neoplastic Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...