Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 99(1-1): 010302, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30780306

ABSTRACT

Pattern recognition is a fundamental neuronal process which enables a cortical system to interpret visual stimuli. How the brain learns to recognize patterns is, however, an unsolved problem. The frequently employed method of back propagation excels at this task but has been found to be unbiological in many aspects. In this Rapid Communication we achieve pattern recognition tasks in a biologically, fully consistent framework. We consider a neuronal network exhibiting avalanche dynamics, as observed experimentally, and implement negative feedback signals. These are chemical signals, such as dopamine, which mediate synaptic plasticity and sculpt the network to achieve certain tasks. The system is able to distinguish horizontal and vertical lines with high accuracy, as well as to perform well at the more complicated task of handwritten digit recognition. Resulting from the learning mechanism, spatially separate activity regions emerge, as observed in the primary visual cortex using functional magnetic resonance imaging techniques. The results therefore suggest that negative feedback signals offer an explanation for the emergence of distinct activity areas in the visual cortex.

2.
Phys Rev E ; 97(3-1): 032312, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29776048

ABSTRACT

In recent years self organized critical neuronal models have provided insights regarding the origin of the experimentally observed avalanching behavior of neuronal systems. It has been shown that dynamical synapses, as a form of short-term plasticity, can cause critical neuronal dynamics. Whereas long-term plasticity, such as Hebbian or activity dependent plasticity, have a crucial role in shaping the network structure and endowing neural systems with learning abilities. In this work we provide a model which combines both plasticity mechanisms, acting on two different time scales. The measured avalanche statistics are compatible with experimental results for both the avalanche size and duration distribution with biologically observed percentages of inhibitory neurons. The time series of neuronal activity exhibits temporal bursts leading to 1/f decay in the power spectrum. The presence of long-term plasticity gives the system the ability to learn binary rules such as xor, providing the foundation of future research on more complicated tasks such as pattern recognition.

3.
Sci Rep ; 6: 32071, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27534901

ABSTRACT

Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.


Subject(s)
Models, Neurological , Neuronal Plasticity/physiology , Neurons/physiology , Action Potentials/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...