Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 66(6): 1247-52, 2012.
Article in English | MEDLINE | ID: mdl-22828302

ABSTRACT

A quantitative real-time polymerase chain reaction (qPCR) is a robust means by which to monitor toxin-producing cyanobacteria. However, qPCR usually requires DNA extraction, which is a time-consuming, labor-intensive pretreatment. To be able to quickly determine the potential of cyanotoxin contamination in the field, a rapid pretreatment method for DNA extraction and a portable qPCR device are needed. In this study, we applied a microwave-based method for the qPCR pretreatment and a multicolor portable qPCR with UPL and TaqMan probes to quantify toxigenic and total Microcystis. The method was tested using laboratory cultures of toxigenic Microcystis aeruginosa PCC7820. The qPCR results showed the cycle thresholds value (Ct value) correlated well with cell numbers, with detection limit at about 1,000 cells/ml. This scheme was applied in 22 environmental samples from six drinking water reservoirs (DWRs) in Taiwan. Although the results for qPCR were about four times higher than those of microscopic observation, good correlation between qPCR and microscope methods were obtained (r-square: 0.79, P < 0.01). The ratios of toxigenic Microcystis to total Microcystis in two reservoirs, Sin-Shan Reservoir and Shih-men Reservoir, were less than 10%. In three other reservoirs, Ren-Yi-Tan Reservoir, Nan-Hua Reservoir and Bao-Shan Reservoir, much higher (>46.1%) ratios were obtained. The scheme may assist quick assessment of the risk associated with toxic cyanobacteria in DWRs.


Subject(s)
Microcystis/isolation & purification , Microwaves , Real-Time Polymerase Chain Reaction/methods , Water Microbiology/standards , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Water Supply
2.
Biotechnol Prog ; 17(2): 379-82, 2001.
Article in English | MEDLINE | ID: mdl-11312720

ABSTRACT

Enzymatic hydrolysis of waste office (WO) paper with feeding WO paper in a reactor was investigated using apparent viscosity as operating parameter. Since the apparent viscosity was correlated with the concentration of pulping WO paper, the amount of hydrolyzed WO paper was assumed by measuring the decrease in the apparent viscosity. Then the amount of hydrolysis WO paper and the amount of enzyme corresponding to the desired ratio were fed into the reactor. When the WO paper and 1% (to the amount of WO paper) enzyme were fed to the hydrolytic reaction, 87 g/L of reducing sugar (RS) with a hydrolytic yield of 42.2% was obtained for a 24-h hydrolysis. However, when nonpulping WO paper and 5% (to the amount of WO paper) enzyme were fed to the hydrolytic reaction, 120 g/L of RS with a hydrolytic yield of 40% was obtained for a 24-h hydrolysis. Therefore, the RS concentration from this hydrolysis process feeding WO paper using apparent viscosity as operating parameter may be of sufficient concentration to serve as a carbon source in microorganism culture or chemical feedstock.


Subject(s)
Cellulase/metabolism , Cellulose/metabolism , Industrial Waste , Paper , Acremonium/enzymology , Hydrolysis , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...