Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 788: 147821, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34029822

ABSTRACT

Concentrations of 34 unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) and AhR-mediated activities in settled dust samples were determined by a combination of gas chromatography-mass spectrometry and an in vitro reporter gene assay (PAH-CALUX). The levels of Σ34PAHs and bioassay-derived benzo[a]pyrene equivalents (CALUX BaP-EQs) were significantly higher in workplace dust from informal end-of-life vehicle dismantling workshops than in common house dust and road dust. In all the samples, the theoretical BaP-EQs of PAHs (calculated using PAH-CALUX relative potencies) accounted for 28 ± 19% of the CALUX BaP-EQs, suggesting significant contribution of aryl hydrocarbon receptor (AhR) agonists and/or mixture effects. Interestingly, the bioassay-derived BaP-EQs in these samples were significantly correlated with not only unsubstituted PAHs with known carcinogenic potencies but also many Me-PAHs, which should be included in future monitoring and toxicity tests. The bioassay responses of many sample extracts were substantially reduced but not suppressed with sulfuric acid treatment, indicating contribution of persistent AhR agonists. Cancer risk assessment based on the CALUX BaP-EQs has revealed unacceptable level of risk in many cases. The application of bioassay-derived BaP-EQs may reduce underestimation in environmental management and risk evaluation regarding PAHs and their derivatives (notably Me-PAHs), suggesting a consideration of using in vitro toxic activity instead of conventional chemical-specific approach in such assessment practices.


Subject(s)
Neoplasms , Polycyclic Aromatic Hydrocarbons , Dust/analysis , Environmental Monitoring , Genes, Reporter , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment
2.
Environ Sci Technol ; 55(4): 2324-2335, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33440927

ABSTRACT

Commercial mixtures of decabromodiphenyl ether (deca-BDE), a brominated flame retardant, contain not only polybrominated diphenyl ethers (PBDEs, mainly BDE-209) as the main component but also dioxin-like compounds (DLCs) such as polybrominated dibenzofurans (PBDFs). Deca-BDE handling facilities (DHFs) and sewage treatment plants receiving effluent from DHFs are point sources of DLC and flame retardant (FR) pollution. Here, we examined their emission in Japan. For DHF effluents, DLCs detected by the dioxin-responsive chemically activated luciferase expression (DR-CALUX) assay were 1.3-890 pg TCDD-EQ/L (median 46 pg TCDD-EQ/L), while PBDEs and other FRs were <2.0-110,000 ng/L (610 ng/L) and 150-4,800,000 ng/L (41,000 ng/L). Risk quotients based on predicted no-effect concentrations suggested that DLCs, decabromodiphenyl ethane (DBDPE), tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) present significant risks for aquatic organisms. The concentrations of PBDFs, which are impurities in deca-BDE, were expected to decrease with the inclusion of deca-BDE in the Stockholm Convention list of persistent organic pollutants (May 2017). However, DLCs other than PBDFs and alternative FRs such as DBDPE, TDBP-TAZTO, and BPA-BDPP are likely still discharged. Additional findings indicate that strong (e.g., DLCs, DBDPE, and BPA-BDPP), but not weak (e.g., TDBP-TAZTO), hydrophobic compounds are sufficiently removed by current wastewater treatment processes in Japan.


Subject(s)
Dioxins , Flame Retardants , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Japan , Sewage
3.
Chemosphere ; 244: 125448, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31812059

ABSTRACT

Here, we characterized the dioxin-like activities of 42 polychlorinated naphthalenes (PCNs) and 6 technical Halowax formulations by using the DR-CALUX (dioxin-responsive chemically activated luciferase expression) assay with rat hepatoma luciferase-expressing H4IIE cells. Of the 42 PCNs examined, 31 showed dioxin-like activities, for which the mass-based REP-EC5TCDD (potency relative to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin based on the 5% effective concentration determined from the dose-response curve for 2,3,7,8-TCDD) ranged from 0.00000012 to 0.0051, indicating that some of the PCNs (e.g., 1,2,3,6,7,8-HxCN and 1,2,3,4,6,7-HxCN) had dioxin-like activities that were equal to or higher than the WHO-TEFs and the mass-based REP-EC5TCDD reported for dioxins such as octachlorodibenzo-p-dioxin, octachlorodibenzofuran, 3,3',4,4'-tetrachlorobiphenyl (PCB-77), 3,4,4',5-tetrachlorobiphenyl (PCB-81), and 3,3',4,4',5,5'-hexachlorobiphenyl (PCB-169). For PeCNs to OCN with high dioxin-like activities, REPs determined in previous studies were comparable to the REP values obtained in the present study. The TCDD-EQs (2,3,7,8-TCDD equivalents) obtained experimentally for the Halowax formulations decreased in the order HW1051 (37 mg/kg) > HW1014 (30 mg/kg) > HW1013 (5.6 mg/kg) > HW1099 (2.9 mg/kg) > HW1001 (0.60 mg/kg) > HW1031 (<0.10 mg/kg) and were comparable to the theoretical TCDD-EQs calculated by multiplying the concentration and REP of each PCN. In addition, the theoretical TCDD-EQs for PCNs in emission gases produced by thermal processes were below the Japanese emission standard of 0.1-10 ng WHO-toxicity equivalent (TEQ)/m3N, and 3 to 4 orders of magnitude lower than the corresponding WHO-TEQ. Based on a comparison of theoretical and experimental TCDD-EQs, we found that our REP-based approach was suitable for the risk management of industrially produced and unintentionally generated dioxin-like PCNs. This approach will be particularly useful for the risk management of unintentionally generated PCNs in emission gases because the contribution of dioxin-like PCNs to the whole dioxin-like toxicity of emission gases can be elucidated.


Subject(s)
Dioxins/toxicity , Environmental Pollutants/toxicity , Naphthalenes/toxicity , Animals , Benzofurans , Biological Assay , Luciferases/metabolism , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Rats , Risk Management , Toxicity Tests
5.
Anal Chim Acta ; 975: 86-95, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28552310

ABSTRACT

In 2011, a joint World Health Organization (WHO) and United Nations Environment Programme expert panel recommended the use of the WHO toxicity equivalency factor (TEF) scheme for assessment of the human health risks of brominated dioxins which have different sources from chlorinated dioxins. Therefore, WHO toxic equivalents (TEQs) should be determined for both chlorinated and brominated dioxins. As alternative to the conventional but time-consuming dioxin analysis using gas chromatography high-resolution mass spectrometry, we have developed a screening method involving cleanup and separation of brominated dioxins from chlorinated dioxins in field samples and subsequent analysis by CALUX (chemically activated luciferase expression) assays which are in vitro reporter gene assays detecting dioxin-like compounds. Cleanup and separation were accomplished with silica gel columns impregnated with 55% sulfuric acid and with 10% silver nitrate, respectively, and the average recoveries of the major contributors to the WHO-TEQs were approximately 90%. The CALUX 2,3,7,8-TCDD equivalents (CALUX-TEQs) derived from all the dioxin-like compounds in the cleanup fractions of the field samples (n = 24) were measured by means of the CALUX assays, indicating significant positive correlations between the WHO-TEQs and CALUX-TEQs (r ≥ 0.969, P < 0.001). We found that the ratios of the chlorinated dioxin-derived WHO-TEQs to the brominated dioxin-derived WHO-TEQs were strongly positively correlated with the ratios of the CALUX-TEQs derived from the chlorinated dioxin fractions to the CALUX-TEQs derived from the brominated dioxin fractions (r ≥ 0.833, P < 0.001). These results suggest that our method will be useful for estimating the contributions of chlorinated and brominated dioxins to WHO-TEQs.


Subject(s)
Dioxins/toxicity , Genes, Reporter , Polychlorinated Dibenzodioxins/toxicity , Animals , Biological Assay , Carcinoma, Hepatocellular , Cell Line, Tumor , Mice , Rats
6.
Chemosphere ; 168: 1248-1256, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27814953

ABSTRACT

The concentrations of organic flame retardants (FRs) and dioxin-like activities in dust collected from five countries were investigated. The correlations between the concentrations of the different groups of FRs and dioxin-like activities were examined. Chlorinated paraffins (CPs, C9 to C31) were found in the highest concentration (median ∑CP 700 µg/g, range 280-4750 µg/g), followed by organophosphate esters (median ∑13OPEs 56 µg/g, range 21-110 µg/g), halogenated flame retardants (median ∑17HFRs 3.3 µg/g, range 0.87-14 µg/g) and polybrominated diphenyl ethers (median ∑17PBDEs 2.8 µg/g, range 0.46-11 µg/g). There were no significant differences in concentrations of the FRs among the countries but differences in PBDE and CP congener profiles were found. BDE209 predominated in dust from Australia, the UK, Sweden and China, ranging from 50 to 70% of total PBDEs. The lowest percentage of BDE209 was found in the dust from Canada, representing only 20% of total PBDEs. For CPs in dust from Sweden, the long-chain CPs (especially C18 congeners) predominated, while for other countries, medium-chain CPs (especially C14 congeners) predominated. The dioxin-activities of the dusts ranged from 58 to 590 pg CALUX-TEQ/g, and had a median of 200 pg CALUX-TEQ/g. There were significant positive correlations between concentrations of PBDEs and CPs with dioxin-like activities. The dioxin-like activity may be due to the presence of polychlorinated or polybrominated dioxin/furans (PBDD/DFs) or polychlorinated naphthalenes (PCNs) in the dust. The PBDD/DFs are known impurities and degradation product of the penta-BDE mixture, and PCNs are known impurities of CPs which exhibit dioxin-like activities.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Dust/analysis , Air Pollutants/pharmacology , Animals , Australia , Canada , Cell Line, Tumor , China , Dioxins/analysis , Dioxins/pharmacology , Environmental Monitoring , Esters , Flame Retardants/analysis , Flame Retardants/pharmacology , Halogenated Diphenyl Ethers/analysis , Halogenated Diphenyl Ethers/pharmacology , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/pharmacology , Luciferases/genetics , Luciferases/metabolism , Organophosphates/analysis , Organophosphates/pharmacology , Paraffin/analysis , Paraffin/pharmacology , Rats , Receptors, Aryl Hydrocarbon/metabolism , Sweden , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...