Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
J Inflamm (Lond) ; 21(1): 16, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745328

ABSTRACT

BACKGROUND: Neutrophils are a heterogeneous population capable of antimicrobial functions associated with pre-activation/activation and tissue regeneration. The specific polarisation of immune cells is mediated by the modification of 'chromatin landscapes', which enables differentiated access and activity of regulatory elements that guarantee their plasticity during inflammation No specific pattern within histone posttranslational modifications (PTMs) controlling this plasticity has been identified. METHODS: Using the in vitro model of inflammation, reflecting different states of neutrophils from resting, pre-activated cells to activated and reducing tissue regeneration, we have analysed 11 different histone posttranslational modifications (PTMs), PTM enzymes associated with remodelling neutrophil chromatin, and H3K4me3 ChIP-Seq Gene Ontology analysis focusing on the processes related to histone PTMs. These findings were verified by extrapolation to adequate clinical status, using neutrophils derived from the patients with sepsis (systemic septic inflammation with LPS-stimulated neutrophils), neuromyelitis optical spectrum disorders (aseptic inflammation with pre-activated neutrophils) and periodontitis (local self-limiting septic inflammation with IL-10-positive neutrophils). RESULTS: Physiological activation of neutrophils comprises a pre-activation characterised by histone H3K27ac and H3K4me1, which position enhancers; direct LPS exposure is induced explicitly by H3K4me3 which marked Transcription Start Site (TSS) regions and low-level of H3K9me3, H3K79me2 and H3K27me3 which, in turn, marked repressed genes. Contrary to antimicrobial action, IL-10 positively induced levels of H3S10p and negatively H3K9me3, which characterised processes related to the activation of genes within heterochromatin mediated by CHD1 and H3K9me3 specific demethylase JMJD2A. IL-10 protects changes within histone PTMs induced by TNF or LPS that affected H3K4me3-specific methyltransferase SETD1A and MLL1. Neutrophils previously exposed to inflammatory factors become unvulnerable to IL-10 because previous LPS stimulation interrupts TSS regions marked by H3K4me3 of CHD1 and JMJD2A genes. Therefore, LPS-activated neutrophils are disabled to induce CHD1/JMJD2A enzymes by IL-10, making this process irreversible. Because transcription of JMJD2A and CHD1 also depends on TSS positioning by H3K4me3, neutrophils before LPS stimulation become insensitive to IL-10. CONCLUSION: Neutrophils, once pre-activated by TNF or directly stimulated by LPS, become insensitive to the anti-inflammatory effects of IL-10, and vice versa; IL-10 protects neutrophils against these proinflammatory stimuli. This phenomenon is responsible for disturbing the natural process of resolving inflammation and tissue regeneration.

2.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703928

ABSTRACT

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Subject(s)
Apoptosis , Dendrimers , Polyethylene Glycols , Polyphenols , RNA, Small Interfering , Humans , Dendrimers/chemistry , Dendrimers/administration & dosage , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , A549 Cells , Apoptosis/drug effects , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Polyethylene Glycols/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/administration & dosage , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Cell Movement/drug effects , Drug Carriers/chemistry , Silanes/chemistry , Transfection/methods , Cell Line, Tumor
3.
J Autoimmun ; 145: 103204, 2024 May.
Article in English | MEDLINE | ID: mdl-38520895

ABSTRACT

Epidemiological studies show that cardiovascular events related to platelet hyperactivity remain the leading causes of death among multiple sclerosis (MS) patients. Quantitative or structural changes of platelet cytoskeleton alter their morphology and function. Here, we demonstrated, for the first time, the structural changes in MS platelets that may be related to their hyperactivity. MS platelets were found to form large aggregates compared to control platelets. In contrast to the control, the images of overactivated, irregularly shaped MS platelets show changes in the cytoskeleton architecture, fragmented microtubule rings. Furthermore, MS platelets have long and numerous pseudopodia rich in actin filaments. We showed that MS platelets and megakaryocytes, overexpress ß1-tubulin and ß-actin mRNAs and proteins and have altered post-translational modification patterns. Moreover, we identified two previously undisclosed mutations in the gene encoding ß1-tubulin in MS. We propose that the demonstrated structural changes of platelet cytoskeleton enhance their ability to adhere, aggregate, and degranulate fueling the risk of adverse cardiovascular events in MS.


Subject(s)
Blood Platelets , Cytoskeletal Proteins , Cytoskeleton , Multiple Sclerosis , Tubulin , Humans , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/blood , Blood Platelets/metabolism , Tubulin/metabolism , Tubulin/genetics , Female , Cytoskeleton/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Adult , Male , Middle Aged , Actins/metabolism , Actins/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Protein Processing, Post-Translational , Mutation
4.
Sci Rep ; 14(1): 5946, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467715

ABSTRACT

The use of dendrimers as drug and nucleic acid delivery systems requires knowledge of their interactions with objects on their way to the target. In the present work, we investigated the interaction of a new class of carbosilane dendrimers functionalized with polyphenolic and caffeic acid residues with human serum albumin, which is the most abundant blood protein. The addition of dendrimers to albumin solution decreased the zeta potential of albumin/dendrimer complexes as compared to free albumin, increased density of the fibrillary form of albumin, shifted fluorescence spectrum towards longer wavelengths, induced quenching of tryptophan fluorescence, and decreased ellipticity of circular dichroism resulting from a reduction in the albumin α-helix for random coil structural form. Isothermal titration calorimetry showed that, on average, one molecule of albumin was bound by 6-10 molecules of dendrimers. The zeta size confirmed the binding of the dendrimers to albumin. The interaction of dendrimers and albumin depended on the number of caffeic acid residues and polyethylene glycol modifications in the dendrimer structure. In conclusion, carbosilane polyphenolic dendrimers interact with human albumin changing its structure and electrical properties. However, the consequences of such interaction for the efficacy and side effects of these dendrimers as drug/nucleic acid delivery system requires further research.


Subject(s)
Caffeic Acids , Dendrimers , Nucleic Acids , Humans , Serum Albumin, Human/metabolism , Dendrimers/chemistry , Silanes/chemistry
5.
Sci Rep ; 14(1): 1615, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238354

ABSTRACT

Gene therapy presents an innovative approach to the treatment of previously incurable diseases. The advancement of research in the field of nanotechnology has the potential to overcome the current limitations and challenges of conventional therapy methods, and therefore to unlocking the full potential of dendrimers for use in the gene therapy of neurodegenerative disorders. The blood-brain barrier (BBB) poses a significant challenge when delivering therapeutic agents to the central nervous system. In this study, we investigated the biophysical properties of dendrimers and their complexes with siRNA directed against the apolipoprotein E (APOE) gene to identify an appropriate nanocarrier capable of safely delivering the cargo across the BBB. Our study yielded valuable insights into the complexation process, stability over time, the mechanisms of interaction, the influence of dendrimers on the oligonucleotide's spatial structure, and the potential cytotoxic effects on human cerebral microvascular endothelium cells. Based on our findings, we identified that the dendrimer G3Si PEG6000 was an optimal candidate for further research, potentially serving as a nanocarrier capable of safely delivering therapeutic agents across the BBB for the treatment of neurodegenerative disorders.


Subject(s)
Dendrimers , Neurodegenerative Diseases , Humans , RNA, Small Interfering/genetics , Dendrimers/chemistry , Silanes/chemistry
6.
APMIS ; 132(2): 112-121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37971173

ABSTRACT

Human rhinovirus 16 (HRV16) may induce inflammatory and antiviral responses in the human lung vascular endothelium (ECs) and impair its barrier functions after infection. However, ECs may regain barrier and metabolic functions. Mechanisms of limitation of HRV16 infection in the lung vascular endothelium are unknown. Human lung vascular endothelium (HMVEC-L) was infected with HRV16. IFN-ß, OAS-1, and PKR expression was assessed by real-time PCR, flow cytometry, and confocal microscope. To prove the significance of IFN-ß in the limitation of HRV16 replication, HMVEC-Ls were preincubated with anti-IFN-ß Abs. To prove the involvement of OAS-1 and PKR in the IFN-dependent limitation of HRV16 replication, HMVEC-Ls were transfected with respective siRNA. HRV16 stimulated IFN-ß production and activated intracellular mechanisms of antiviral immunity based on OAS-1 and PKR activation. Blocking of IFN-ß contributed to the inhibition of intracellular mechanisms of antiviral immunity (OAS-1, PKR) and boosted replication of HRV16. Effective OAS-1 silencing by siRNA caused the increase of HRV16 copy numbers after HRV16 infection. siRNA upregulated the other genes related to the antiviral response. The infected lung vascular endothelium may limit the HRV16 infection. This limitation may be associated with the induction of IFN-ß-dependent intracellular mechanisms based on OAS-1 and PKR activity.


Subject(s)
Endothelium, Vascular , Lung , Humans , Gene Expression , RNA, Small Interfering/genetics , Interferon-beta/metabolism
7.
Environ Pollut ; 340(Pt 2): 122735, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37848082

ABSTRACT

Wide availability of anthropogenic TiO2 nanoparticles facilitates their penetration into environment and prompts interactions with plants. They alter plants growth and change their nutritional status. In particular, metabolic processes are affected. In this work the effect of nanometric TiO2 on photosynthesis efficiency in green pea (Pisum sativum L.) was studied. Hydroponic cultivations with three Ti levels (10; 50 and 100 mg L-1) were applied. At all concentrations nanoparticles penetrated into plant tissues and were detected by the single particle ICP-MS/MS method. Nanoparticles altered the CO2 assimilation rate and gas exchange parameters (i.e. transpiration, stomatal conductance, sub-stomatal CO2 concentration). The most pronounced effects were observed for Ti 50 mg L-1 cultivation where photosynthesis efficiency, transpiration and stomatal conductance were increased by 14.69%, 4.58% and 8.92%, respectively. They were further confirmed by high maximum ribulose 1,5-bisphosphate carboxylation rate (27.40% increase), maximum electron transport rate (21.51% increase) and the lowest CO2 compensation point (45.19% decrease). Furthermore, concentrations of Cu, Mn, Zn, Fe, Mg, Ca, K and P were examined with the most pronounced changes observed for elements directly involved in photosynthesis (Cu, Zn, Mn, and Fe). The Cu concentrations in roots, stems and leaves for Ti 50 mg L-1 cultivation were below the control by 33.15%, 38.28% and 10.76%, respectively. The Zn content in analogous treatment and organs decreased by 30.24%, 26.69% and 13.35%. The Mn and Fe levels in leaves were increased by 72.22% and 50.32%, respectively. Our results indicated that plant defence mechanisms which restrain the water uptake have been overcome in pea by photocatalytic activity of nanoparticulate TiO2 which stimulated photosynthesis. On the contrary to the substantial stomatal conductance, the transpiration has been reduced because exceptional part of water flow was already consumed in chloroplasts and could not have been freed to the atmosphere.


Subject(s)
Carbon Dioxide , Pisum sativum , Tandem Mass Spectrometry , Photosynthesis , Water
8.
Biomed Pharmacother ; 168: 115798, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913733

ABSTRACT

Despite extensive efforts and ongoing progress in personalized anticancer approaches, chemotherapy remains the first line or the only treatment for some tumors that may develop resistance to chemotherapeutics in time due to inter alia overexpression of ATP-binding cassette transporters. Using clinically-relevant resistant models of triple negative breast cancer (MDA-MB-231; TNBC) as well as non-small cell lung cancer (A549; NSCLC), we tested the efficacy of I-CBP112 - CBP/EP300 bromodomain inhibitor to overcome drug resistance by declining ABC gene transcription. I-CBP112 significantly reduced ABCB1, ABCC1, ABCC2, ABCC3, ABCC5 and ABCG2 in all resistant lines, as well as ABCC10 in TNBC and ABCC4 in paclitaxel-resistant NSCLC, thereby increasing intracellular drug accumulation and cytotoxicity in 2D and 3D cultures. This was phenocopied only by the joint effect of ABC inhibitors such as tariquidar (ABCB1 - P-glycoprotein and ABCG2) and MK-571 (ABCC), whereas single inhibition of ABCB1/ABCG2 or ABCC proteins did not affect drug accumulation, thereby implying the need of simultaneous deficiency in activity of majority of drug pumps for enhanced drug retention. I-CBP112 failed to directly inhibit activity of ABCB1, ABCG2 and ABCC subfamily members at the same time. Importantly, I-CBP112 treated cancer cells polarized human macrophages into proinflammatory phenotypes. Moreover, I-CBP112 remained non-toxic to primary cell lines, nor did it enhance anticancer drug toxicity to blood-immune cells. In silico assay of ADMET properties confirmed the desired pharmacokinetic features of I-CBP112. The results suggest that the CBP/p300 inhibitor is a promising co-adjuvant to chemotherapy in drug-resistant cancer phenotypes, capable of decreasing ABC transporter expression.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Triple Negative Breast Neoplasms , Humans , ATP-Binding Cassette Transporters , Drug Resistance, Multiple , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , A549 Cells , Triple Negative Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Cell Line, Tumor , Antineoplastic Agents/therapeutic use
9.
Cell Physiol Biochem ; 57(5): 360-378, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37767694

ABSTRACT

BACKGROUND/AIMS: Cancer cell multidrug resistance induced by paclitaxel contributes to the high failure rates of chemotherapy and relapse of the disease. Several mechanisms have been described that underlie the observed resistance, including the overexpression of ABCB1 (P-glycoprotein), which represents an ATP-binding cassette (ABC) transmembrane protein, and its functional occurrence in lysosomal membranes is linked to drug accumulation in these organelles. METHODS: Using clinically-relevant models of paclitaxel-resistant triple-negative breast cancer and non-small cell lung cancer cell lines, we provide evidence for the role of ABCC subfamily members in the lysosomal sequestration of drugs in multidrug resistant phenotypes. Proteins expression level and its cellular localisation was measured using Western Blot and confocal microscopy. Drug accumulation was analysed by confocal microscopy and flow cytometry. Drug cytotoxicity was tested using resasurin assay and anexin V propidium iodide staining. RESULTS: Regardless of the alteration in gene expression, paclitaxel induced the intracellular redistribution of ABCC3, ABCC5 and ABCC10 and their enrichment in lysosomes. The use of ABCC inhibitors and transient silencing of these three genes limited the accumulation of doxorubicin and paclitaxel-OregonGreen488 in lysosomes, while having little impact on the total drug level inside cells. The cancer cells were also sensitized to various structurally unrelated chemotherapeutics of differing acidity. CONCLUSION: The results suggest that lysosome membranes anchored ABCC proteins which remained functionally active and were capable to load chemotherapeutics into lysosomes in paclitaxel-resistant cancer cells. Therefore, targeting of lysosomal ABCC transporters may help to overcome paclitaxel-induced resistance by reducing the accumulation of drugs in lysosomes.

10.
Cells ; 12(16)2023 08 11.
Article in English | MEDLINE | ID: mdl-37626862

ABSTRACT

The low distribution of hydrophobic anticancer drugs in patients is one of the biggest limitations during conventional chemotherapy. SDS-based polyelectrolyte multicore nanocarriers (NCs) prepared according to the layer by layer (LbL) procedure can release paclitaxel (PTX), and selectively kill cancer cells. Our main objective was to verify the antitumor properties of PTX-loaded NCs and to examine whether the drug encapsulated in these NCs retained its cytotoxic properties. The cytotoxicity of the prepared nanosystems was tested on MCF-7 and MDA-MB-231 tumour cells and the non-cancerous HMEC-1 cell line in vitro. Confocal microscopy, spectrophotometry, spectrofluorimetry, flow cytometry, and RT PCR techniques were used to define the typical hallmarks of apoptosis. It was demonstrated that PTX encapsulated in the tested NCs exhibited similar cytotoxicity to the free drug, especially in the triple negative breast cancer model. Moreover, SDS/PLL/PTX and SDS/PLL/PGA/PTX significantly reduced DNA synthesis. In addition, PTX-loaded NCs triggered apoptosis and upregulated the transcription of Bax, AIF, cytochrome-c, and caspase-3 mRNA. Our data demonstrate that these novel polyelectrolyte multicore NCs coated with PLL or PLL/PGA are good candidates for delivering PTX. Our discoveries have prominent implications for the possible choice of newly synthesized, SDS-based polyelectrolyte multicore NCs in different anticancer therapeutic applications.


Subject(s)
Breast Neoplasms , Nanoparticles , Paclitaxel , Sodium Dodecyl Sulfate , Paclitaxel/administration & dosage , Humans , Cell Line, Tumor , Breast Neoplasms/drug therapy , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Sodium Dodecyl Sulfate/administration & dosage , Electrolytes/chemistry , Apoptosis/drug effects , Mitochondria/drug effects
11.
Nanomedicine ; 53: 102703, 2023 09.
Article in English | MEDLINE | ID: mdl-37591367

ABSTRACT

Carbosilane metallodendrimers, based on the arene Ru(II) complex (CRD13) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. In vivo investigations proved that a local injection of CRD13 caused a reduction of tumour mass and was non-toxic. ICP analyses indicated that Ru(II) accumulated in all tested tissues with a greater content detected in the tumour.


Subject(s)
Antineoplastic Agents , Ruthenium , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Ruthenium/pharmacology , Ruthenium/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
12.
Colloids Surf B Biointerfaces ; 227: 113371, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244201

ABSTRACT

One of the major limitations for the treatment of many diseases is an inability of drugs to cross the cell membrane barrier. Different kinds of carriers are being investigated to improve drug bioavailability. Among them, lipid or polymer-based systems are of special interest due to their biocompatibility. In our study, we combined dendritic and liposomal carriers and analysed the biochemical and biophysical properties of these formulations. Two preparation methods of Liposomal Locked-in Dendrimers (LLDs) systems have been established and compared. Carbosilane ruthenium metallodendrimer was complexed with an anti-cancer drug (doxorubicin) and locked in a liposomal structure, using both techniques. The LLDs systems formed by hydrophilic locking had more efficient transfection profiles and interacted with the erythrocyte membrane better than systems using the hydrophobic method. The results indicate these systems have improved transfection properties when compared to non-complexed components. The coating of dendrimers with lipids significantly reduced their hemotoxicity and cytotoxicity. The nanometric size, low polydispersity index and reduced positive zeta potential of such complexes made them attractive for future application in drug delivery. The formulations prepared by the hydrophobic locking protocol were not effective and will not be considered furthermore as prospective drug delivery systems. In contrast, the formulations formed by the hydrophilic loading method have shown promising results where the cytotoxicity of LLD systems with doxorubicin was more effective against cancer than normal cells.


Subject(s)
Antineoplastic Agents , Dendrimers , Neoplasms , Ruthenium , Humans , Dendrimers/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Liposomes/chemistry , Neoplasms/drug therapy , Lipids
13.
Colloids Surf B Biointerfaces ; 227: 113359, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209597

ABSTRACT

The interaction of proteins with nanoparticle components are crucial for the evaluation of nanoparticle function, toxicity and biodistribution. Polyethyleneimines (PEIs) with defined tyrosine modifications are a class of novel polymers designed for improved siRNA delivery. Their interactions with biomacromolecules are still poorly described. This paper analyzes the interaction of different tyrosine-modified PEIs with human serum albumin as the most abundant serum protein. The ability of tyrosine modified, linear or branched PEIs to bind human serum albumin (HSA) was analyzed and further characterized. The interaction with hydrophobic parts of protein were studied using 1- nilinonaphthalene-8-sulfonic acid (ANS) and changes in the HSA secondary structure were evaluated using circular dichroism (CD). Complex formation and sizes were studied by transmission electron microscopy (TEM) and dynamic light scattering methods (DLS). We demonstrate that tyrosine modified PEIs are able to bind human serum albumin. Based on thermodynamic studies, van der Waals interaction, H-bonding and hydrophobic interactions are determined as main molecular forces involved in complex formation. Analysis of secondary structures revealed that the polymers decreased α-helix content, while increasing levels of randomly folded structures. Complex formation was confirmed by TEM and DLS. These findings are crucial for understanding polymer-protein interactions and the properties of nanoparticles.


Subject(s)
Polyethyleneimine , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Polyethyleneimine/metabolism , Binding Sites , Protein Binding , Tyrosine/metabolism , Tissue Distribution , Spectrometry, Fluorescence/methods , Molecular Docking Simulation , Circular Dichroism , Thermodynamics
14.
Int J Pharm ; 636: 122784, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36858135

ABSTRACT

The carbosilane metallodendrimer G1-[[NCPh(o-N)Ru(η6- p-cymene)Cl]Cl]4 (CRD13), based on an arene Ru(II) complex coordinated to imino-pyridine surface groups, has been conjugated with anti-cancer drugs. Ruthenium in the positively-charged dendrimer structure allows this nanoparticle to be considered as an anticancer drug carrier, made more efficient because ruthenium has anticancer properties. The ability of CRD13 to form complexes with Doxorubicin (DOX), 5-Fluorouracil (5-Fu), and Methotrexate (MTX) has been evaluated using zeta potential measurement, transmission electron microscopy (TEM) and computer simulation. The results show that it forms stable nanocomplexes with all those drugs, enhancing their effectiveness against MDA-MB-231 cancer cells. In vivo tests indicate that the CRD13/DOX system caused a decrease of tumor weight in mice with triple negative breast cancer. However, the tumors were most visibly reduced when naked dendrimers were injected.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Drug Carriers , Molecular Structure , Ruthenium/chemistry , Triple Negative Breast Neoplasms/drug therapy , Computer Simulation , Antineoplastic Agents/chemistry , Cell Line, Tumor , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor
15.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835489

ABSTRACT

Copper carbosilane metallodendrimers containing chloride ligands and nitrate ligands were mixed with commercially available conventional anticancer drugs, doxorubicin, methotrexate and 5-fluorouracil, for a possible therapeutic system. To verify the hypothesis that copper metallodendrimers can form conjugates with anticancer drugs, their complexes were biophysically characterized using zeta potential and zeta size methods. Next, to confirm the existence of a synergetic effect of dendrimers and drugs, in vitro studies were performed. The combination therapy has been applied in two cancer cell lines: MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line). The doxorubicin (DOX), methotrexate (MTX) and 5-fluorouracil (5-FU) were more effective against cancer cells when conjugated with copper metallodendrimers. Such combination significantly decreased cancer cell viability when compared to noncomplexed drugs or dendrimers. The incubation of cells with drug/dendrimer complexes resulted in the increase of the reactive oxygen species (ROS) levels and the depolarization of mitochondrial membranes. Copper ions present in the dendrimer structures enhanced the anticancer properties of the whole nanosystem and improved drug effects, inducing both the apoptosis and necrosis of MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line) cancer cells.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carcinoma , Dendrimers , Humans , Female , Dendrimers/chemistry , Copper/chemistry , Methotrexate , Ligands , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Fluorouracil , Cell Line, Tumor
16.
Front Immunol ; 13: 932383, 2022.
Article in English | MEDLINE | ID: mdl-35935952

ABSTRACT

The blood-brain barrier (BBB) tightly controls the microenvironment of the central nervous system (CNS) to allow neurons to function properly. Additionally, emerging studies point to the beneficial effect of natural oils affecting a wide variety of physiological and pathological processes in the human body. In this study, using an in vitro model of the BBB, we tested the influence of natural fish oil mixture (FOM) vs. borage oil (BO), both rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and monounsaturated fatty acids (MUFAs) such as oleic acid (C18:1n9c) or nervonic acid (NA), on human oligodendrocyte precursor cells (hOPCs) during their maturation to oligodendrocytes (OLs) regarding their ability to synthesize myelin peptides and NA. We demonstrated that FOM, opposite to BO, supplemented endothelial cells (ECs) and astrocytes forming the BBB, affecting the function of hOPCs during their maturation. This resulted in improved synthesis of myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), proteolipid protein (PLP), and NA in mature OLs. This effect is probably the result of BBB cell and hOPC stimulation via free fatty acid receptors (FFARs), which increases insulin growth factor-1 (IGF-1), ciliary neurotrophic factor (CNTF), and brain-derived neurotrophic factor (BDNF) and inhibits fibroblast growth factor 2 (FGF-2) synthesis. The unique formula of fish oil, characterized by much more varied components compared to those of BOs, also improved the enhancement of the tight junction by increasing the expression of claudin-5 and VE-cadherin on ECs. The obtained data justify consideration of naturally derived fish oil intake in human diet as affecting during remyelination.


Subject(s)
Oligodendrocyte Precursor Cells , Blood-Brain Barrier , Endothelial Cells , Fish Oils/pharmacology , Humans , Oligodendroglia/metabolism
17.
APMIS ; 130(11): 678-685, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35959516

ABSTRACT

Vascular endothelium is a semi-permeable barrier that regulates the flow of nutrients, ions, cytokines and immune cells between blood and tissues. Barrier properties of endothelium, its ability to regenerate and the potential for secretion of inflammatory mediators play a crucial role in maintaining local tissue homeostasis. The lung vascular endothelial cells were shown to be infected by human rhinovirus (HRV) and generate antiviral, inflammatory and cytopathic responses. The current study reveals that in the long-time manner, the lung vascular endothelium may efficiently limit the HRV replication via the IFN-dependent 2'-5'-oligoadenylate synthetase 1 activation. This leads to the restoration of integrity accompanied by the up-regulation of adherens and tight junctions, increase of metabolic activity and proliferation rate. Secondly, HRV16-infected cells show delayed and transient up-regulation of the expression of vascular endothelial growth factor (VEGF), fibroblast growth factor, angiopoietin 1 and 2, and neuropilin-1, as well as VEGF receptors. The lung vascular endothelium infected with HRV may limit the infection, recover in time, and regain barrier properties and metabolic functions, thus leading to the restoration of integrated barrier tissue.


Subject(s)
Rhinovirus , Vascular Endothelial Growth Factor A , 2',5'-Oligoadenylate Synthetase , Angiopoietin-1/metabolism , Antiviral Agents , Cytokines/metabolism , Endothelial Cells , Endothelium, Vascular , Fibroblast Growth Factors/metabolism , Humans , Inflammation Mediators/metabolism , Interferons , Lung , Neuropilin-1/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Virus Replication
18.
Front Immunol ; 13: 906311, 2022.
Article in English | MEDLINE | ID: mdl-35757755

ABSTRACT

Neutrophils are a heterogenous population capable of both antimicrobial functions and suppressor ones, however, no specific pattern of transcription factors controlling this plasticity has been identified. We observed rapid changes in the neutrophil status after stimulation with LPS, pre-activating concentration of TNF-α, or IL-10. Chromatin immunoprecipitation sequencing (ChIP-Seq) analysis of histone H3K4me3 allowed us to identify various transcriptional start sites (TSSs) associated with plasticity and heterogeneity of human neutrophils. Gene Ontology analysis demonstrated great variation within target genes responsible for neutrophil activation, cytokine production, apoptosis, histone remodelling as well as NF-κB transcription factor pathways. These data allowed us to assign specific target genes positioned by H3K4me3-marked histone with a different pattern of gene expression related to NF-κB pathways, apoptosis, and a specific profile of cytokines/chemokines/growth factors realised by neutrophils stimulated by LPS, IL-10, or TNF-α. We discovered IL-10-induced apoptotic neutrophils being transcriptionally active cells capable of switching the profile of cytokines/chemokines/growth factors desired in resolving inflammation via non-canonical NF-κB pathway with simultaneous inhibition of canonical NF-κB pathway. As apoptotic/suppressive neutrophils induced by IL-10 via positioning genes within H3K4me3-marked histone were transcriptionally active, newly described DNA binding sites can be considered as potential targets for immunotherapy.H3K4me3 histone ChIP-Seq analysis reveals molecular drivers critical for switching neutrophils from their pro- to anti-inflammatory properties.


Subject(s)
Histones , Neutrophils , Cytokines/metabolism , Histones/metabolism , Humans , Interleukin-10/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Neutrophils/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Biology (Basel) ; 11(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35625372

ABSTRACT

The pathological conditions caused by blood platelet activation constitute a fundamental core in the pathogenesis of Acute Coronary Syndrome (ACS). The hyperactivity of platelets in ACS is well-documented, but there is still little research into the molecular basis of phenotypic changes in platelet functionality. To expand the knowledge of this phenomenon, we analyzed the disturbances in the expression of several key platelet receptors and the aspect of regulating potential abnormalities. Platelet surface receptors are responsible for maintaining the hemostatic balance, platelet interaction with immune cells, and support of the coagulation cascade leading to occlusion of the vessel lumen. Due to their prominent role, platelet receptors constitute a major target in pharmacological treatment. Our work aimed to identify the molecular alteration of platelet surface receptors, which showed augmented mRNA expression of P2Y12, GP1BB, ITGA2B, and ITGB3 and increased protein concentrations of P2Y12 and GP IIb/IIIa in ACS. The upregulation of the P2Y12 level was also confirmed by confocal and cytometric visualization. Furthermore, we evaluated the expression of two microRNAs: miR-223-3p and miR-126-3p, which were suggested to regulate platelet P2Y12 expression. Results of our study present new insight into the molecular background of ACS.

20.
Int J Mol Sci ; 23(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35269991

ABSTRACT

Tubular polymeric structures have been recognized in the treatment of peripheral nerves as comparable to autologous grafting. The best therapeutic outcomes are obtained with conduits releasing therapeutic molecules. In this study, a new approach for the incorporation of biologically active agent-loaded microspheres into the structure of chitosan/polycaprolactone conduits was developed. The support of a polycaprolactone helix formed by 3D melt extrusion was coated with dopamine in order to adsorb nerve growth factor-loaded microspheres. The complex analysis of the influence of process factors on the coverage efficiency of polycaprolactone helix by nerve grow factor-loaded microspheres was analyzed. Thus, the PCL helix characterized with the highest adsorption of microspheres was subjected to nerve growth factor release studies, and finally incorporated into chitosan hydrogel deposit through the process of electrophoretic deposition. It was demonstrated by chemical and physical tests that the chitosan/polycaprolactone conduit meets the requirements imposed on peripheral nerve implants, particularly mimicking mechanical properties of surrounding soft tissue. Moreover, the conduit may support regrowing nerves for a prolonged period, as its structure and integrity persist upon incubation in lysozyme-contained PBS solution up to 28 days at body temperature. In vitro cytocompatibility toward mHippoE-18 embryonic hippocampal cells of the chitosan/polycaprolactone conduit was proven. Most importantly, the developed conduits stimulate axonal growth and support monocyte activation, the latter is advantageous especially at early stages of nerve regeneration. It was demonstrated that, through the described approach for controlling spatiotemporal release of nerve growth factors, these biocompatible structures adjusted to the specific peripheral nerve injury case can be manufactured.


Subject(s)
Chitosan , Chitosan/chemistry , Chitosan/pharmacology , Nerve Growth Factor/pharmacology , Nerve Regeneration/physiology , Peripheral Nerves/physiology , Polyesters , Sciatic Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...