Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2260): 20230176, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37742706

ABSTRACT

The issue focuses on physics-informed machine learning and its applications for structural integrity and safety assessment of engineering systems/facilities. Data science and data mining are fields in fast development with a high potential in several engineering research communities; in particular, advances in machine learning (ML) are undoubtedly enabling significant breakthroughs. However, purely ML models do not necessarily carry physical meaning, nor do they generalize well to scenarios on which they have not been trained on. This is an emerging field of research that potentially will raise a huge impact in the future for designing new materials and structures, and then for their proper final assessment. This issue aims to update the current research state of the art, incorporating physics into ML models, and providing tools when dealing with material science, fatigue and fracture, including new and sophisticated algorithms based on ML techniques to treat data in real-time with high accuracy and productivity. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.

2.
Philos Trans A Math Phys Eng Sci ; 379(2203): 20200436, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34148424

ABSTRACT

The present paper describes detailed analyses of experimental data for the cyclic-fatigue behaviour of epoxy nanocomposite polymers. It has been shown that the data may be interpreted using the Hartman-Schijve relationship to yield a unique, 'master', linear relationship for each epoxy nanocomposite polymer. By fitting the experimental data to the Hartman-Schijve relationship, two key materials parameters may be deduced: (i) the term A, which may be thought of as the fatigue equivalent to the quasi-static value of the fracture energy, Gc, and (ii) the fatigue threshold value, [Formula: see text], below which no significant fatigue crack growth (FCG) occurs. It has then been established that the values of these parameters, together with the slope, n, and intercept, D, of the Hartman-Schijve master relationship, may be used (i) to compute the experimental results measured for the fatigue behaviour of the epoxy nanocomposite polymers, (ii) to understand the observed fracture and fatigue behaviour of these materials with respect to the structure of the epoxy nanocomposite polymers, and (iii) to deduce the 'upper-bound', i.e. 'worst-case', FCG rate curve which may be used by industry as a material development, material selection, design and service-life prediction tool when these epoxy nanocomposite polymers are used in engineering applications such as structural adhesives and/or as matrices in fibre-reinforced composites. This article is part of a discussion meeting issue 'A cracking approach to inventing new tough materials: fracture stranger than friction'.

3.
Materials (Basel) ; 14(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805756

ABSTRACT

The United States Air Force (USAF) Guidelines for the Durability and Damage Tolerance (DADT) certification of Additive Manufactured (AM) parts states that the most difficult challenge for the certification of an AM part is to establish an accurate prediction of its DADT. How to address this challenge is the focus of the present paper. To this end this paper examines the variability in crack growth in tests on additively manufactured (AM) Ti-6Al-4V specimens built using selective layer melting (SLM). One series of tests analysed involves thirty single edge notch tension specimens with five build orientations and two different post heat treatments. The other test program analysed involved ASTM standard single edge notch specimens with three different build directions. The results of this study highlight the ability of the Hartman-Schijve crack growth equation to capture the variability and the anisotropic behaviour of crack growth in SLM Ti-6Al-4V. It is thus shown that, despite the large variability in crack growth, the intrinsic crack growth equation remains unchanged and that the variability and the anisotropic nature of crack growth in this test program is captured by allowing for changes in both the fatigue threshold and the cyclic fracture toughness.

4.
Materials (Basel) ; 13(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408649

ABSTRACT

Understanding and characterizing crack growth is central to meeting the damage tolerance and durability requirements delineated in USAF Structures Bulletin EZ-SB-19-01 for the utilization of additive manufacturing (AM) in the sustainment of aging aircraft. In this context, the present paper discusses the effect of different AM processes, different build directions, and the variability in the crack growth rates related to AM Ti-6Al-4V, AM Inconel 625, and AM 17-4 PH stainless steel. This study reveals that crack growth in these three AM materials can be captured using the Hartman-Schijve crack growth equation and that the variability in the various da/dN versus ΔK curves can be modeled by allowing the terms ΔKthr and A to vary. It is also shown that for the AM Ti-6AL-4V processes considered, the variability in the cyclic fracture toughness appears to be greatest for specimens manufactured using selective layer melting (SLM).

5.
Materials (Basel) ; 13(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210207

ABSTRACT

Abstract: This paper firstly reveals that when assessing if a bonded joint meets the certification requirements inherent in MIL-STD-1530D and the US Joint Services Standard JSSG2006 it is necessary to ensure that: (a) There is no yielding at all in the adhesive layer at 115% of design limit load (DLL), and (b) that the joint must be able to withstand design ultimate load (DUL). Secondly, it is revealed that fatigue crack growth in both nano-reinforced epoxies, and structural adhesives can be captured using the Hartman-Schijve crack growth equation, and that the scatter in crack growth in adhesives can be modelled by allowing for variability in the fatigue threshold. Thirdly, a methodology was established for estimating a valid upper-bound curve, for cohesive failure in the adhesive, which encompasses all the experimental data and provides a conservative fatigue crack growth curve. Finally, it is shown that this upper-bound curve can be used to (a) compare and characterise structural adhesives, (b) determine/assess a "no growth" design (if required), (c) assess if a disbond in an in-service aircraft will grow and (d) to design and life in-service adhesively-bonded joints in accordance with the slow-growth approach contained in the United States Air Force (USAF) certification standard MIL-STD-1530D.

6.
Nature ; 553(7687): 189-193, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29323292

ABSTRACT

Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund's rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the 'dark exciton'. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...